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Abstract. The complexity and heterogeneity of human wa-
ter use over large spatial areas and decadal timescales can
impede the understanding of hydrological change, particu-
larly in regions with sparse monitoring of the water cycle.
In the Arkavathy watershed in southern India, surface water
inflows to major reservoirs decreased over a 40-year period
during which urbanization, groundwater depletion, modifi-
cation of the river network, and changes in agricultural prac-
tices also occurred. These multiple, interacting drivers com-
bined with limited hydrological monitoring make attribution
of the causes of diminishing water resources in the watershed
challenging and impede effective policy responses. To miti-
gate these challenges, we developed a novel, spatially dis-
tributed dataset to understand hydrological change by char-
acterizing the residual trends in surface water extent that re-
main after controlling for precipitation variations and com-
paring the trends with historical land use maps to assess hu-
man drivers of change. Using an automated classification ap-
proach with subpixel unmixing, we classified water extent
in nearly 1700 man-made lakes, or tanks, in Landsat images
from 1973 to 2010. The classification results compared well
with a reference dataset of water extent of tanks (R2

= 0.95).
We modeled the water extent of 42 clusters of tanks in a mul-
tiple regression on simple hydrological covariates (including
precipitation) and time. Inter-annual variability in precipita-
tion accounted for 63 % of the predicted variability in wa-
ter extent. However, precipitation did not exhibit statistically
significant trends in any part of the watershed. After control-
ling for precipitation variability, we found statistically sig-

nificant temporal trends in water extent, both positive and
negative, in 13 of the clusters. Based on a water balance ar-
gument, we inferred that these trends likely reflect a non-
stationary relationship between precipitation and watershed
runoff. Independently of precipitation, water extent increased
in a region downstream of Bangalore, likely due to increased
urban effluents, and declined in the northern portion of the
Arkavathy. Comparison of the drying trends with land use
indicated that they were most strongly associated with irri-
gated agriculture, sourced almost exclusively by groundwa-
ter. This suggests that groundwater abstraction was a ma-
jor driver of hydrological change in this watershed. Disag-
gregating the watershed-scale hydrological response via re-
mote sensing of surface water bodies over multiple decades
yielded a spatially resolved characterization of hydrological
change in an otherwise poorly monitored watershed. This ap-
proach presents an opportunity to understand hydrological
change in heavily managed watersheds where surface water
bodies integrate upstream runoff and can be delineated using
satellite imagery.

1 Introduction

Human water consumption is straining water resources
worldwide (Vogel et al., 2015; Gleick, 2014; Wada et al.,
2012; Lall et al., 2008), with developing nations particularly
vulnerable to water scarcity (Vörösmarty et al., 2010). The
causes of water scarcity are complex (Srinivasan et al., 2012)
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and in southern India have been associated with urbaniza-
tion (Srinivasan et al., 2013), groundwater depletion (Reddy,
2005), degradation of rainwater harvesting structures (Gun-
nell and Krishnamurthy, 2003), and interstate water disputes
(Anand, 2004).

Water scarcity in southern India is aggravated by the fact
that human activities have shifted or reduced the availabil-
ity of water resources through inter-basin transfers, artifi-
cial conveyance, changes in land use, and irrigation (Mo-
han and Routray, 2015). Effective management of water re-
sources in southern India requires better characterization of
the changing nature of water resources (Kumar et al., 2005;
Milly et al., 2008) and associated human drivers of change
(Venot et al., 2007; Falkenmark et al., 2007; Wagener et al.,
2010). Human interventions in the water cycle often occur
due to decisions made at local scales, and therefore exhibit
considerable spatial heterogeneity when considered at larger
scales. This is problematic in this region because most re-
search linking human drivers to hydrological responses fo-
cuses on either the local scale (Perrin et al., 2012; Van Me-
ter et al., 2016) or regional to national scales (Gosain et al.,
2011; Devineni et al., 2013; Tiwari et al., 2009). There is
little research that addresses the emergent effects and hetero-
geneity of human-driven hydrological change across the wa-
tershed scales at which management decisions must typically
be made. The gap in scientific understanding at management-
relevant scales is strongly associated with a lack of data res-
olution at these scales, and forces water managers to make
decisions without sufficient information about cause and ef-
fect within watersheds (Batchelor et al., 2003; Glendenning
et al., 2012; Lele et al., 2013; Srinivasan et al., 2015).

The data scarcity that challenges understanding of human-
driven hydrological change in southern India is a common
challenge in hydrology and has been extensively explored
through the lens of “predictions in ungauged basins” (PUB)
over the past 2 decades (Bonell et al., 2006; Hrachowitz et al.,
2013). The methodologies developed through the PUB initia-
tive focused strongly on near-“natural” basins, where proxies
for flow behavior (whether climatic, geographic, or geomor-
phic) could be used to form a space in which to extrapolate
flows observed in gauged basins to those in the ungauged
site (Blöschl, 2013). Extending these techniques to heavily
managed catchments presents numerous challenges, includ-
ing the identification of suitable proxies to define the effects
of human intervention and non-stationarity of the water cy-
cle (Thompson et al., 2013). Given the complexity of these
managed systems, hydrological reconstruction to infer or re-
produce the history of hydrological change can help identify
the predominant processes that relate human water use and
management to the hydrological response.

Here we present such a hydrological reconstruction cov-
ering 4 decades of extensive hydrological change in the
Arkavathy watershed near Bangalore, India (Fig. 1). Con-
cern about water scarcity in the Arkavathy watershed has
grown with the loss of historical monsoon-season river flow
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Figure 1. Site map. (a) Location of the Arkavathy watershed within
the state of Karnataka, India, and scene boundaries for Landsat 1–
3 (WRS-1) and Landsat 4–8 (WRS-2). (b) Map of the watershed
including tanks and reservoirs including the stream gauge locations,
river network, and municipal boundary of Bangalore. Lower-order
streams and a number of small, generally dry tanks are excluded.
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and reduced inflows to the TG Halli reservoir, which was
the primary water supply reservoir for Bangalore between
the 1930s and 1970s. These inflows have declined by nearly
80 % since the late 1970s, a time period that also included
groundwater depletion and loss of storage in surface reser-
voirs. Analysis by Srinivasan et al. (2015) showed that nei-
ther trends in precipitation nor evaporative demand could
explain the observed changes in river flow. Instead, reduc-
tions in river channel flow were probably caused by human
drivers of change such as expansion of Eucalyptus planta-
tions, groundwater depletion associated with irrigated agri-
culture, and the construction of in-stream check dams (Srini-
vasan et al., 2015).

Groundwater irrigation grew in popularity in India in
the 1960s (Briscoe and Malik, 2006), supplanting tank irri-
gation in southern India in the following decades with the
widespread adoption of borewells for groundwater pump-
ing (Janakarajan, 1993a). Groundwater is now the dominant
source of irrigation water in the Arkavathy watershed (Lele
et al., 2013; Srinivasan et al., 2015). The availability of year-
round reliable water supplies led to increases in the extent
and intensity of agricultural production, and thus further de-
mand for water. Replacement of traditional crops with Euca-
lyptus plantations, and population growth and urbanization
around the periphery of Bangalore, the road network, and
other urban hubs have also likely increased water demand.
As villages and farmers became more reliant on groundwa-
ter, they attempted to augment groundwater recharge by con-
structing hundreds, if not thousands, of in-stream check dams
which impound a portion of streamflow which is then re-
moved from the channel via groundwater recharge or evapo-
ration (Srinivasan et al., 2015). These decentralized land and
water management decisions are spatially heterogeneous,
and characterizing their effects on surface water is hindered
by the lack of hydrological records in the Arkavathy. How-
ever, spatially explicit characterization of variations in these
drivers and hydrological change across the watershed could
offer a basis for drawing conclusions about the likely causes
of change, thus assisting in the development of management
approaches. To date, such analysis has been limited to anec-
dotal stakeholder accounts (Lele et al., 2013).

Our reconstruction relies on developing a history of
change in the end-of-monsoon-season water storage in
widely distributed surface rainwater harvesting structures
known as tanks (Vaidyanathan, 2001; Van Meter et al., 2014).
Agriculture in southern India was historically sustained by
a series of reservoirs known collectively as the “cascading
irrigation tank system”. Nearly 1700 tanks have been con-
structed in the Arkavathy watershed. Tanks typically con-
sist of a long, shallow dam bund constructed across a river
to harvest surface runoff during the monsoon and supply
irrigation water during the dry season. The bund impedes
streamflow until the tank fills, overflows, and “cascades” into
downstream tanks. Although the dam bunds remain in place,
village-level water managers report that the tanks rarely fill

up or overflow in large portions of the Arkavathy (ATREE
et al., 2015), similar to other watersheds in southern India
(Janakarajan, 1993b; Gunnell and Krishnamurthy, 2003; Ku-
mar et al., 2016). This decline of tank water is a cause of
concern in the Arkavathy and much of the region, and multi-
ple efforts have been initiated to rejuvenate tanks, often with-
out a clear understanding of the drivers of degradation of the
system (Kumar et al., 2016; Srinivasan et al., 2015).

Other studies have also used small surface reservoirs as
aggregators of upstream discharge. For instance, in situ mea-
surements of tank water storage have been successfully used
to calibrate and validate hydrological models in Andhra
Pradesh (Perrin et al., 2012) and Tamil Nadu (Van Meter
et al., 2016). Other studies in southern India (Mialhe et al.,
2008), the USA (Halabisky et al., 2016), Africa (Meigh,
1995; Liebe et al., 2005; Sawunyama et al., 2006; Liebe et al.,
2009; Gardelle et al., 2010), and South America (Rodrigues
et al., 2012) also use surface water bodies as aggregators of
streamflow.

An illustrative example of one of the tanks in the Arka-
vathy watershed is shown in Fig. 2 for two conditions: one
prior to a runoff event, and another following a runoff event
in August 2014. This tank, like all tanks in the watershed,
is directly connected to surface flow in the river channel net-
work. Consequently, changes in the water surface area within
tanks (tank water extent), such as the changes occurring be-
tween the two images shown in Fig. 2, provide a proxy for
surface flow generation over the upstream catchment area.

Hydrological changes in the Arkavathy watershed should
be apparent in historical satellite imagery, as the period of
reported hydrological change in the Arkavathy (from the
late 1970s onward) coincides with the initial image col-
lection by Landsat satellites in 1972. We develop an auto-
mated approach for estimating tank water extent in the Arka-
vathy watershed using Landsat imagery and apply this ap-
proach to reconstruct a time series of water extent in tanks
from 1973 to 2010. We then undertake a statistical analy-
sis that identifies temporal trends in water extent while con-
trolling for variability in precipitation over the study pe-
riod. We interpret long-term trends in tank water extent that
remain after controlling for precipitation variations as an
indication of spatially variable hydrologic nonstationarity.
Specifically, we hypothesize that declines in tank water ex-
tent derived from human activities associated with ground-
water depletion, such as groundwater abstraction for irriga-
tion or groundwater mining by Eucalyptus plantations. To
explore this hypothesis, we compare the non-precipitation-
related temporal trends of tank water extent against land use
profiles developed by Lele and Sowmyashree (2016). These
analyses, including remote sensing, modeling of tank water
extent, and land use–trend comparison, are outlined in the
methods section below.
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Figure 2. Aerial photos of a small tank containing turbid water
in the Arkavathy watershed before and after runoff events in Au-
gust 2014. The tank receives water from the channel and directly
from adjacent agricultural plots, and water extent increases with
storage.

2 Methods

2.1 Study site

The Arkavathy watershed spans 4253 km2 on the western
edge of the city of Bangalore in Karnataka, southern India
(Fig. 1). It has a monsoonal climate and mean annual rain-
fall of 820 mm. The monsoon season includes the southwest
monsoon from June to September and the northeast monsoon
from October to December. We therefore refer to April–May
as the pre-monsoon period, June–December as the wet or
monsoon season, December–January as the end-of-monsoon
period, and January–May as the dry season. We also refer to
the “monsoon year”, analogous to the usual concept of the
water year, spanning the period from April to March of the
following year. The watershed has a relatively stable daily
maximum temperature of 27 ◦C, which peaks near the end
of the dry season in April around 34 ◦C, before pre-monsoon
rainfall arrives sporadically in April and May. The river is
gauged at TG Halli reservoir (Location 2, Fig. 1b) and up-
stream of Harobele reservoir (Location 5, Fig. 1b).

●

Subwatershed

●

Hesaraghatta
Kumudavathy
TG Halli East
Vrishabhavati
Manchanabele
Suvarnamukhi
Kanakapura
Harobele

Figure 3. Subwatersheds of the Arkvathy watershed. Smaller-scale
divisions delineate clusters of tanks (see Sect. 2.4).

The watershed contains a mix of urban, natural, and agri-
cultural land uses. Agricultural land can be divided into rain-
fed grain crops, irrigated vegetable crops, Eucalyptus plan-
tations, and other irrigated tree plantations (e.g., areca nut).
Most present-day irrigation water in the Arkavathy is sourced
from a deep, fractured rock aquifer. Irrigation from tanks
is now significant in only a few locations, mostly located
downstream of Bangalore. The city of Bangalore imports wa-
ter from the regional Cauvery river and returns some urban
wastewater to the Arkavathy system. Although many tanks
are no longer in use, the tank structures remain intact and
continue to capture inflow.

The watershed can be divided into eight subwatersheds
(Fig. 3), which include three major tributaries to the Arka-
vathy (Kumudavathy, Vrishabhavati, and Suvarnamukhi),
and five other subwatersheds identified by reservoirs or ge-
ographic area (Hesaraghatta, TG Halli East, Manchanabele,
Kanakapura, and Harobele). The major reservoirs in the wa-
tershed differ from the tanks in that they are actively man-
aged, providing water for urban and agricultural water users.
For this reason, we focus our analysis of hydrological change
on the behavior of tanks.

2.2 Remote sensing analysis

The aim of the remote sensing analysis was to generate a
time series of the surface area of water stored in each tank
(referred to from now on as the “tank water extent”) in the
Arkavathy watershed. There is minimal rainfall or flow out-
side the monsoon period, and analysis of tank areas within
the monsoon period is inhibited by extensive cloud cover.
The analysis therefore focused on end-of-monsoon images
from the months of December and January (< 5 % of rainfall
arrives in December).

Landsat satellite imagery was used for analyses, includ-
ing 16 images taken in December or January between 1973
and 2010 which provided information about end-of-monsoon
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tank water extent. An additional 32 images were classified
to assist in validation, and to provide information about tank
water extent variations during the dry season (see Fig. S1 and
Table S1 in the Supplement for imagery dates).

A range of pre-processing and quality assurance and con-
trol procedures were performed on the imagery, includ-
ing converting all Landsat imagery to top-of-atmosphere
reflectance (Chander et al., 2009), identifying missing re-
gions of Landsat 1–3 MSS scenes, accounting for the fail-
ure of the scan-line corrector (SLC) in Landsat 7 ETM+
images (Scaramuzza et al., 2005; Chen et al., 2011; Catts
et al., 1985), and masking of cloud shadows (Zhu and Wood-
cock, 2012; Irish, 2000; Craven et al., 2002). The location
of tanks within the resulting images was determined us-
ing a shapefile of tank boundaries obtained from the Kar-
nataka State Remote Sensing Application Centre (KSR-
SAC, karnataka.gov.in/ksrsac), supplemented by 1970s to-
pographic maps (surveyofindia.gov.in) for the beginning of
the study period. The Supplement contains complete infor-
mation on data sources (Table S2) and pre-processing of im-
agery (Sect. S1.1).

The tank water classification method relied on separat-
ing pixels containing water from pixels containing land in a
spatial region defined by the mapped tank boundaries. Land
cover surrounding wetted areas of tanks included vegeta-
tion, bare soil, and built-up urban land. We grouped these
classes into a single land class, which was characterized by
high reflectance in the near-infrared (NIR) band and lower
reflectance in visible bands (McFeeters, 1996). Water stored
in tanks in the Arkavathy watershed varied from clear (with
low reflectance in all Landsat bands) to turbid (more reflec-
tive in the visible, Moore, 1980 and NIR bands, Whitlock
et al., 1981). Turbid water exhibited its highest reflectance
in the red band due to the red soils in the Arkavathy water-
shed (Novo et al., 1989). A conceptual representation of the
classification algorithm is provided in Fig. 4, and the steps
described below are cross-referenced to the numbered panels
in the figure.

The Normalized Difference Water Index by McFeeters
(1996), NDWI= (green−NIR)/(green+NIR), was calcu-
lated at a manually selected reservoir containing clear wa-
ter (step 1). Otsu’s method (Otsu, 1979) was then used to
threshold NDWI into land and clear water classes, and the
spectral means of both classes were calculated at the train-
ing reservoir (step 2). The minimum NDWI of water pixels
at the training reservoir (step 3a) was used as a threshold to
create a mask of “apparent” clear water for the entire scene
(step 3b) which was then dilated using a 5× 5 square kernel
(a 3× 3 kernel for MSS scenes). All pixels within the di-
lated mask were transformed to a single component, x̂, par-
allel to the transect between the spectral means of clear wa-
ter and land in the two-dimensional space of NIR and green
reflectance (step 3c). Pixels falling between the x̂ means of
clear water and land were assigned a clear water fraction, in

5: Water fraction for each 
pixel is max of clear fraction 

and turbid fraction

1: Select training reservoir. 
Calculate NDWI

2: Otsu method for NDWI 
threshold at training 
reservoir. Calculate 

spectral means for land 
& clear water

3c: Spectral unmixing for 
clear water fraction with 

green, NIR bands

3a: Water pixels – NDWI 
threshold for clear water

4a: Land pixels – NIR & red 
thresholds for turbid water

4c: Spectral unmixing for 
turbid water fraction with 

red, NIR bands

4b: Identify apparent turbid 
water pixels. Dilate two pixels

3b: Identify apparent clear 
water pixels. Dilate two pixels

7: Set flags for clouds/shadows, MSS NA, SLC missing pixels. 
Remove corresponding tanks

6: Tank water extent is 
sum of water fraction 

of pixels in tank

Red NIR

NDWI

Green

N
IR

1

0

x

x

Figure 4. Flowchart of the classification method. In steps 3 and 4,
clear water fraction and turbid water fraction are each calculated
for all pixels in the image before they are combined into water frac-
tion in step 5. Color images are from Landsat, with red, green, and
blue in the image corresponding to NIR, red, and green bands from
Landsat TM.

the range [0, 1], based on the linear distance between the end
members along the x̂ transect.

A similar procedure of masking, dilating, and unmixing
was performed for turbid water, with minor changes. The
criteria for apparent turbid water pixels were determined
from land pixels near the training reservoir as the 98th per-
centile of red reflectance and the 98th percentile of NDWI
(step 4a), provided that red reflectance was greater than NIR
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reflectance. Pixels meeting these criteria were included in the
turbid water mask and dilated to include the surrounding area
(step 4b). Spectral unmixing was conducted similarly to clear
water, except that the component for unmixing, ŷ, was taken
along the transect between the spectral means of turbid water
and land in the NIR–red space (step 4c). Finally, the water
area in each pixel was taken as the higher value of clear wa-
ter area and turbid water area (step 5). Tank water extent was
calculated as the sum of water area of all pixels within 2 pix-
els of the mapped tank boundary (step 6).

We did not estimate the area of water in any tank that was
flagged for the following quality concern criteria: (i) spatial
overlap or adjacency of dry tank boundary or wetted tank
area with clouds or cloud shadows, (ii) spatial overlap of
greater than 25 % of dry or wet tank area with missing pix-
els due to the scan line corrector (SLC) error in Landsat 7
images, or (iii) greater than 25 % spatial overlap of dry or
wet tank area with the edge of the scene from MSS images
(step 7). In each of these cases, the tank area was recorded
as “NA”. Examples of the classification and resulting time
series of tank water extent are shown in the Supplemental
material for a small tank (≈ 25 ha, Fig. S4) and a large tank
(≈ 160 ha, Fig. S5).

Remote sensing and spatial processing were scripted in R
(R Core Team, 2016) using the raster (Hijmans, 2015), rgeos
(Bivand and Rundel, 2016), sp (Pebesma and Bivand, 2005),
and rgdal (Bivand et al., 2016) packages, as well as ggplot
(Wickham, 2009) for plotting. Watershed delineation and ex-
traction of the cascading tank network were completed in
GRASS GIS (GRASS Development Team, 2016).

2.3 Validation of the classification method

Classification results were validated against a 5 m resolution
LISS IV satellite image from 26 February 2014 using a clas-
sified Landsat image from 27 February 2014. The LISS IV
image was classified in ENVI 4.9 (Harris Geospatial Solu-
tions Inc.) using support vector machine (SVM) classifica-
tion with four land classes and four water classes. After clas-
sification, the water classes were merged into a single water
class and resampled to the resolution of Landsat so that the
resulting grayscale classification contained a water fraction
in the range [0, 1] for each pixel. The classifications were
compared at both the pixel scale and tank scale, while ignor-
ing tanks in which there were obvious differences due to the
incongruous image capture dates (e.g., cloud cover).

At the pixel level, a traditional confusion matrix is inap-
propriate for continuous classification data (Congalton and
Green, 2009). Thus, we evaluated the error (Landsat water
fraction minus reference water fraction) in all pixels within
tanks by binning the pixel error into categories represent-
ing under-classified (−1 to −0.2), correct (−0.2 to 0.2), and
over-classified (0.2 to 1). We further separated pixels into
groups by binning the producer (reference) water fraction
and user (Landsat) water fraction. We calculated the pro-

ducer’s and user’s accuracy for each water fraction bin to
form both a producer error matrix and a user error matrix.

We also used Digital Globe imagery available from
Google Earth (Google Earth, 2016) to assess the validity
of the classification in normal (680–955 mm) versus wet
(> 955 mm) precipitation years during the study period.
Given the limited availability of these images, we were un-
able to find a dry-year image (< 680 mm) within the study
period that was suitable for comparison with a mostly cloud-
free Landsat image. We manually delineated 18 tanks in
the normal year (2009) and 34 tanks in wet years (2004
and 2005), and compared the manual delineation with classi-
fication of Landsat images from the same time period using
a linear regression.

2.4 Statistical model of tank water extent

We developed a statistical model to identify changes in tank
water extent that could be attributed to changes in streamflow
production in the Arkavathy watershed. To achieve this, the
model should control for drivers of water extent variability
other than streamflow. Bathymetric surveys in the Arkavathy
watershed indicate that tank water extent is a function of tank
volumetric storage (Young et al., 2017). Thus, a volumetric
water balance for a tank can be used to consider the drivers
of water extent variability, as follows:

S (t2)= S (t1)+

t2∑
t1

(P −Drainage−ET)Atank

+

t2∑
t1

Qin−

t2∑
t1

Qout−

t2∑
t1

Withdrawals, (1)

where S indicates tank storage at time t2 when the Land-
sat image was taken, S(t1) is the storage in the tank at some
prior time t1, P is the precipitation depth over the tank area,
“Drainage” the drainage from the tank floor, “ET” evapo-
ration from the tank surface area, Atank is the tank surface
area, Qin the streamflow entering the tank, Qout the over-
flows leaving the tank, and “Withdrawals” any anthropogenic
withdrawal from the tank itself, and sums are taken from t1
to t2.

In order to use a regression model to infer long-term hy-
drological change using records of water extent and precip-
itation data, we make the following assumptions to account
for each of the terms on the right-hand side of the water bal-
ance:

1. the initial storage S(t1) can be approximated with zero,

2. variations in P , and thus their contribution to variations
in Qin, can be accounted for by including precipitation
as a covariate in the model,

3. variations in Qout can be neglected, for two reasons:
first, because watershed managers report that tanks
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rarely overflow, so Qout can reasonably be approxi-
mated as ≈ 0, and, second, because any overflow that
does occur implies that S is equal to its maximum Smax,
so that variations in overflow cannot contribute to
changes in observed S,

4. the sum of “Drainage”, “ET”, and “Withdrawal” fluxes
can be treated as a stationary cumulative loss term, and

5. any time trends in tank water extent that remain, hav-
ing accounted for (1)–(4), indicate the presence of non-
stationarity in tank water extents that could not be ex-
plained by variability in precipitation.

We confirmed that (1) is reasonable by analyzing carry-over
storage across the dry season using 2014 imagery (selected
because of high image availability). Carry-over water extent
from the 2013 monsoon to the start of the 2014 monsoon was
≤ 25 % or approximately ≤ 12.5 % of end-of-monsoon stor-
age for more than 50 % of tank clusters, and ≤ 50 % or ap-
proximately≤ 35% of storage for more than 75 % of clusters
(water extent to volume conversions are based on bathymet-
ric data reported in Young et al., 2017). Tank clusters with
the highest carryover storage (as inferred from water extent)
were found in urban subwatersheds or hilly subwatersheds in
the southern part of the Arkavathy watershed (see Fig. S8).
These results suggest that carry-over storage is minimal in
most parts of the watershed and that neglecting its effect on
tank water extent variability is reasonable.

Variations in P (2) were accounted for using daily rain-
fall data from 62 gauges from the Directorate of Economics
and Statistics, Government of Karnataka (see Fig. S9 for
station coverage). Precipitation trends were analyzed using
Mann–Kendall non-parametric tests. Exploratory analysis at
the whole-basin scale indicated that tank water extents were
most related to precipitation totals from 1 September to the
date of Landsat image acquisition. Contemporary observa-
tions in the Arkavathy watershed suggest that only the largest
or most intense storms generate runoff. The average depth of
large storms (> 10 mm day−1) from 1 September to the date
of the Landsat image was used as a metric of extreme rainfall
occurrence to account for these observations.

Finally, we accounted for losses by treating the sum of
“Drainage”, “ET”, and “Withdrawal” fluxes as a lumped lin-
ear loss term focusing on the end-of-monsoon and early dry
season. Previous analysis of monitored locations shows that
since the early 1970s, no streamflow occurred in the Arka-
vathy watershed other than in months when rainfall occurred
(Srinivasan et al., 2015), and rainfall was minimal from 1 De-
cember onward. Changes in tank water extent from 1 Decem-
ber into the early dry season are therefore dominated by loss
terms. We confirmed that these losses were stationary in six
of the eight watersheds analyzed by bootstrapping the non-
parametric Mann–Kendall trend tests using classified tank
water extents obtained from 27 dry season Landsat images
(see Fig. S8).

All analyses proceeded by considering two spatial scales:
8 subwatersheds and 42 smaller hydrologically connected
subwatershed units, which are referred to as tank “clus-
ters” (Fig. 3). Each cluster contained at least 15 tanks with
non-zero water extent in at least 4 end-of-monsoon images
(Fig. 3). Aggregated tank water extents for each cluster form
the basis for statistical analysis. Aggregating data in this way
overcomes some of the challenges associated with a rela-
tively short record and frequently dry tanks, while offer-
ing enough spatial resolution to identify variability in trends
across the Arkavathy watershed. The analysis excluded reser-
voirs, because the water extent in a reservoir is also influ-
enced by active management and water transfers. Some tanks
were constructed during the study period, and these tanks
were excluded from the analysis in any years prior to their
construction.

These model features (1)–(5) were incorporated into a
multivariate regression with interactions between continuous
covariates and categorical variables (e.g., see Jaccard et al.,
1990; Cohen et al., 2003). The covariates used were cumu-
lative monsoon season rainfall (from 1 September onward),
denoted Ptotal; average depth of large storms during the mon-
soon season (from September 1 onward), denoted Pextreme;
time delay from the beginning of the end-of-monsoon pe-
riod (1 December) to the date of Landsat image acquisition,
denoted DSD for dry season days; and the year in which
the observation was made, denoted “Year”. The precipita-
tion variables were calculated for each station, interpolated
over the entire watershed using the inverse-distance squared
approach, and spatially averaged for each cluster.

The Ptotal, Pextreme, and DSD covariates were modeled as
fixed effects which interact with the subwatersheds. In other
words, the response of the tank water extent to these vari-
ables was allowed to vary for each subwatershed, but was
assumed to be consistent for the tank clusters within the sub-
watershed. The year effect was estimated separately for each
tank cluster.

The model can be written as follows:

Acluster,ij = C0+C1,kPtotal,ij +C2,kPextreme,ij

+C3,kDSDi +B1,j Yeari + eij . (2)

The subscripts refer to the Landsat scene (i), tank clus-
ters (j ), and subwatersheds (k). Other than the intercept (C0),
the fixed effects differ for each subwatershed (C1,k , C2,k ,
and C3,k) or tank cluster (B1,j ). The errors for each obser-
vation are included as eij .

The model predicts the tank water extent per clus-
ter (Acluster,ij ), normalized by its maximum. Tank clusters
were only analyzed for any given scene if ≤ 30 % of the total
cluster tank area was missing (due to tanks being omitted for
QA/QC purposes in classification, or not having been con-
structed by the date of analysis). All covariates were centered
by subtracting the mean before being input into the model.
We confirmed that collinearity between covariates was mini-
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mal and did not impact interpretation of confidence intervals
or model output using generalized variance inflation factors
(Fox, 2008; Fox and Monette, 1992) (see Sect. S2.2 for de-
tails). The model performance was assessed using multiple
R2 statistics and significance of all effects.

The primary result of interest is the “Year” effect on tank
water extent for each cluster, B1,j . This effect represents a
temporal trend in total tank water storage over time (as a
percent change over time), after controlling for a stationary
relationship between tank water storage and the covariates
(Ptotal, Pextreme, DSD). In the six watersheds where dry sea-
son losses were stationary, we attribute this change to chang-
ing inflows, as all other sources of non-stationarity are con-
trolled for. In the two subwatersheds where a change in the
effect of dry season water loss on tank storage was detected,
B1,j captures the combined effect of hydrological change
and non-stationarity in dry-season tank water losses.

Because the value of B1,j is the key result of interest, ad-
ditional analyses were performed to confirm its importance.
Specifically the model was refit while omitting the “Year”
effect B1,j . The performance of the two models (with and
without B1,j ) was compared via R2 metrics. The significance
of deviations between the two model predictions was tested
using an F -test (H0: B1,j = 0, HA: B1,j 6= 0, for at least one
value of j ).

2.5 Linear regression of streamflow trend against land
use

We used four land use maps developed for 1973–1974, 1991–
1992, 2001–2002, and 2013–2014 (Lele and Sowmyashree,
2016) encompassing the TG Halli watershed, which contains
the three subwatersheds upstream of the TG Halli reservoir
(TG Halli East, Kumudavathy, and Hesaraghatta) and in-
cludes a total of 17 tank clusters. The maps differentiate agri-
cultural land use classes into rainfed crops, irrigated crops,
and Eucalyptus plantations. Irrigated agriculture in this re-
gion is supplied almost exclusively by groundwater, allow-
ing us to test whether groundwater-irrigated crops, increased
water utilization by Eucalyptus plantations (Srinivasan et al.,
2015), both, or neither, are associated with the identified
streamflow trend.

In the early 1970s, rainfed agriculture was the primary
land use in the TG Halli watershed. Over the study period,
many farmers adopted groundwater irrigation and others con-
verted their fields to Eucalyptus plantations, which have the
potential to mine shallow groundwater or to significantly re-
duce deep recharge. These land use changes have the po-
tential to reduce surface water flows by depleting subsur-
face water availability and baseflow over time, likely re-
sulting in a non-stationary streamflow response. This non-
stationarity, in conjunction with the relatively sparse avail-
ability of land cover data over time, complicated a direct
analysis of land use against tank water level. Instead, a space-
for-time approach was used to compare the differences in

time-averaged land use across each tank cluster to the dif-
ferences in the “Year” effect B1,j found for each cluster. We
therefore calculate the time-average land use fraction cor-
responding to irrigated crops (Airrigated,avg) and Eucalyptus
plantations (AEucs,avg) for each of the 17 tank cluster water-
sheds and regress (B1,j ) against these land fractions:

B1,j = CEucsAEucs,j +CirrigatedAirrigated,j . (3)

The coefficients, CEucs and Cirrigated, correspond to the sensi-
tivity of hydrological change to time average Eucalyptus land
cover and irrigated agriculture land cover, across all 17 tank
clusters. This analysis is not designed to directly infer cau-
sation, but rather to understand associations between stream-
flow decline and agricultural practices.

3 Results

3.1 Accuracy assessment

The Landsat classification performed best for pixels that
were fully dry or wet, when compared with the refer-
ence (LISS) classification (Fig. 5a). Producer’s accuracy was
84 % for wet pixels and 99 % for dry pixels, and because of
the high number of dry pixels the overall accuracy was 98 %.
Pixels containing a mix of water and land (20–80 % water)
had lower producer’s accuracy (41–82 %). Overall, the clas-
sification errors were unbiased and the histogram of classifi-
cation errors (excluding pixels with zero error) was approxi-
mately normally distributed (Fig. 5b).

The Landsat classification agreed well with the reference
LISS classification at the tank scale, and accuracy improved
with increasing tank size. A regression of Landsat extent
versus reference extent (Fig. 6) for tanks less than 25 ha
(278 pixels) had a slope of 0.98 and a coefficient of deter-
mination (R2) of 0.95. When all tanks and reservoirs were
included, the regression line had a slope of 1.02 and a coeffi-
cient of determination of 0.99. Over 99 % of dry tanks were
correctly classified as dry, but error was considerably larger
for small tanks with non-zero water extent less than 2.5 ha
(28 pixels), due to false positives in the reference classifica-
tion as well as errors in the Landsat classification. For tanks
between 2.5 and 10 ha the classification performed consider-
ably better. The mean absolute error increased as the extent of
the water body increased, but mean percent error decreased
with water body size. Our automated Landsat classification
similarly compared well with the Google Earth manual de-
lineation of tanks in both normal years (R2

= 0.97) and wet
years (R2

= 0.97) (see Fig. S6).
Although the time variations in most tanks have not been

reported via in situ measurements, trends in water storage
over time are widely known for some of the major reservoirs.
The TG Halli and Hesaraghatta reservoirs declined from a
peak storage in the 1970s to much lower contemporary stor-
age. Large increases in water extent were observed in the
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Figure 5. (a) Pixel-level producer’s and user’s accuracy tables,
given by percent of pixels within a given error bin. Pixels are
grouped into rows by the producer or user water fraction and then
binned into columns by the error (Landsat – LISS water fraction).
The center column shows the percentage of pixels that were cor-
rectly classified, with the error between−0.2 and 0.2. (b) Histogram
of non-zero classification errors (excluding pixels where the error
was zero) with a bin width of 0.0667.

Manchanabele reservoir, which was constructed in 1993, and
the Harobele reservoir, which was constructed in 2004. These
anecdotal trends corroborate our findings for these specific
structures (Fig. S7).

3.2 Statistical analysis

Trend analysis of the 62 rain gauges in the watershed showed
that there were no statistically significant trends in rainfall
at the whole watershed (see Fig. S10), subwatershed (not
shown), or tank cluster (see Fig. S11) scales. Precipitation
has thus been stationary, although exhibiting considerable
inter-annual variability during the period of analysis, and any

(a)

(b) (c)

Figure 6. Comparison of Landsat and reference (LISS) classifica-
tion from February 2014 images. (a) Water extent in tanks less than
25 ha. (b) Water extent in all tanks and reservoirs. (c) Error in the
Landsat classification for tanks and reservoirs. Relative error de-
creases with increasing tank size. Only three of the five reservoirs
are included because the LISS image excluded the Harobele reser-
voir and there was considerable change in an algae bloom in the
Byramangala reservoir in the time between the acquisition of the
LISS and Landsat images.

identified trends in tank water extent over time can exclude
consideration of precipitation change as a driver.

The multivariate analysis explained nearly 70 % of the
variation in tank cluster water extent (R2

= 0.68). Model
residuals were normally distributed (Fig. S12). The effects
of both precipitation covariates (Ptotal and Pextreme) were
significant (the 95 % confidence interval of the slopes ex-
cluded zero) in nearly all subwatersheds, and the effect of
dry-season water loss was significant in the two subwater-
sheds that flow into TG Halli reservoir. Inter-annual variabil-
ity in precipitation (Ptotal and Pextreme) explained 63 % of the
total predicted variability in tank water extent over the study
period, while the DSD term explained 10 % of the variability.
Variability in tank water extent due to precipitation was fairly
similar across clusters, while the variability due to temporal
trends varied greatly across clusters.
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The multivariate analysis identified significant “Year” ef-
fects B1,j (Table S3, Fig. S13) in 13 tank clusters. B1,j var-
ied in its sign and statistical significance among tank clus-
ters, and explained 27 % of the total variation in tank wa-
ter extent. In the two subwatersheds flowing directly into
the TG Halli reservoir, B1,j captured the combined ef-
fect of non-stationarity in streamflow generation and non-
stationarity in dry-season tank water losses (lower tank losses
increase B1,j ). If the sign of B1,j is negative in these tanks, it
implies that the effect of non-stationarity in streamflow gen-
eration must both be negative and exceed the effects of re-
duced tank water losses. We converted the units of B1,j to an
areal rate of change over time per 10 km2 of catchment area
(Fig. 7). In the three subwatersheds upstream of TG Halli
reservoir, most tank clusters exhibit negative Bi,j values,
implying reductions in streamflow generation. Tanks within
Bangalore generally exhibited negative “Year” effects, and
tanks at the city periphery and immediately downstream of
the city had positive effects. Other regions of the watershed
exhibited mixed values of Bi,j , but none were statistically
significant at the 95 % confidence level.

We confirmed that the “Year” effect B1,j was important for
understanding the variations in tank water extent. Omitting
the “Year” effect from the tank water extent model lowered
the R2 from 0.68 to 0.58. Furthermore, the model predictions
with and without the “Year” effect were significantly differ-
ent according to the F -test (p < 3.1× 10−11). These results
allow us to reject the null hypothesis that B1,j = 0, meaning
that the “Year” effects could not be ignored.

Overall, the results indicate that, while inter-annual vari-
ations in rainfall totals and extremes explain the majority of
inter-annual variation in tank water level, a trend in tank wa-
ter level is present in several regions of the Arkavathy wa-
tershed that is independent of rainfall variability. This trend
cannot be explained by trends in rainfall, which were negli-
gible (Figs. S10 and S11), by trends in dry season tank water
loss rates, which, where they existed, had the opposite sign to
the identified trend in water level (Fig. S8), or by changes in
outflows, which are constrained to occur when tank storage
is at its peak. The results suggest that changes in streamflow
production independent of rainfall are occurring in discrete
locations in the Arkavathy watershed, and that the sign of
these changes varies through space.

3.3 Streamflow decline and agricultural practices

The regression of the “Year” effect B1,j on irrigated agricul-
ture and Eucalyptus land use areas explained most of the dif-
ferences in B1,j between tank clusters (R2

= 0.68). The re-
lationship between irrigated crops and B1,j was statistically
significant (95 % confidence intervals of Cirrigated excluded
zero), and the relationship with Eucalyptus plantations was
not statistically significant (Fig. 8).

0     10 km

−8

−4

0

4

Temporal trend            

(ha decade−1 10 km−2)

Figure 7. Values of Bi,j , the “Year” effect on cluster water extent,
1973–2010, given as change in water surface area (ha) per decade
per 10 km2 of watershed area. White space indicates subwatershed
boundaries, and black lines indicate the statistical significance of
the cluster trend. Based on analysis of a tank water balance, the sign
of Bi,j offers insight into likely trends in runoff ratio (streamflow
generated within each tank cluster per unit incident rainfall).

4 Discussion

4.1 Long-term hydrological trends and human drivers
of change

Tank water extent at the end of the monsoon season can be
primarily attributed to the storage of monsoon season stream-
flow, given that tanks in the Arkavathy watershed rarely over-
flow, there is little carry-over storage year to year, and loss
processes do not extensively deplete the tanks from the end
of the monsoon period to the time when tank water extents
were observed by Landsat. Thus, storage of water in tanks
offers an integrated measure of tank inflows during the pre-
vious wet season.
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Figure 8. Agricultural land use and hydrological change. (a) Land
use fraction of Eucalyptus plantations and irrigated crops in four
land use maps. (b) Model coefficients (CEucs, Cirrigated) relating
hydrological change to Eucalyptus and irrigated crops, based on the
multivariate linear regression. Horizontal lines indicate 95 % confi-
dence intervals.

Statistical analysis of the tank water extents suggests that
while inter-annual variability in tank water extent is largely
explained by precipitation, this variability is superimposed
on a longer-term trend in tank water extent that is indepen-
dent of precipitation, representing a non-stationarity in in-
flows. Analysis of rain gauges indicated that precipitation
has been stationary within the watershed during the study pe-
riod. Non-stationarity in inflows, coupled with stationarity in
precipitation, indicate changes in the runoff ratio (defined as
flow production per unit precipitation), a common indicator
of changing hydrological processes (Hughes et al., 2012).

Historical land use maps for the TG Halli watershed indi-
cate that there is an association between the inferred stream-
flow generation trends (particularly streamflow declines) and
human drivers of change. We hypothesized that the inferred
decline in streamflow would correspond to agricultural prac-
tices associated with groundwater depletion. Although few
data exist to describe historical declines of the water table,
contemporary farmers typically have to drill new borewells
to depths exceeding 100 m to reach any groundwater. If a loss
of baseflow due to groundwater depletion and the disconnec-
tion of the water table from the stream channel is a primary
driver of streamflow decline, we would expect the negative
trends in streamflow to correspond to irrigated agriculture,
which is supplied almost entirely by groundwater in the TG
Halli watershed.

In the linear model relating the “Year” effect B1,j to land
use in the TG Halli watershed (Eq. 2, Sect. 1), the time-
averaged irrigated crop land use area is a clearer and stronger
predictor of declines in tank water extent than Eucalyp-
tus land use (Fig. 8). Moreover, other exploratory analyses
showed that irrigated crop land use has a higher correla-
tion with B1,j (R2

= 0.68; see Fig. S14) than rainfed crops

(R2
= 0.5) and all other land use types (R2 < 0.38). Areas

retaining mostly rainfed crops exhibit higher (less-negative)
values of B1,j , and lower (more-negative) values of B1,j are
associated with areas with higher conversion of rainfed crops
to irrigated crops. The finding that Eucalyptus plantations do
not play a major role in streamflow decline is consistent with
field experiments, which show that that Eucalyptus planta-
tions tend to reduce soil infiltration capacity and therefore
would increase infiltration excess runoff (Penny et al., 2015).
There could be some relationship between Eucalyptus plan-
tations and non-stationary hydrologic processes, but if so it
is secondary to that of irrigated crops.

Areas with a high fraction of irrigated agriculture are also
likely to contain relatively higher densities of check dams
than other land use types, given the desire to recharge di-
minished groundwater resources. In the absence of datasets
describing the spatial distribution and hydrological prop-
erties of check dams (or a viable way to develop such a
dataset), this analysis is unable to separate the effect of loss
of baseflow due to groundwater pumping from the in-stream
losses due to check dams. Both processes likely play a role
in observed hydrological changes. Recession analyses indi-
cate that the loss of the shallow water table could plausi-
bly explain the observed magnitude of streamflow declines
(Srinivasan et al., 2015), and check dams exacerbate the loss
of streamflow by converting water in the stream channel to
groundwater recharge (Jeremiah and Srinivasan, 2014).

The most negative values of B1,j and thus the largest in-
ferred reductions in streamflow production occurred in the
northernmost regions of the Arkavathy where elevation is
higher than other areas of the watershed. Although it may ap-
pear that the pattern of decline could be related to upstream–
downstream processes and the presence or absence of irriga-
tion return flows (Van Meter et al., 2016), we are doubtful
that this effect is important in the Arkavathy at present. Indi-
rect evidence (e.g., surveys) indicates that the water table is
hundreds of meters below the surface in the northern parts of
the Arkavathy watershed (Srinivasan et al., 2015). Further-
more, the relief in the watershed is ≈ 100 m over a distance
of 50 km in the TG Halli watershed, meaning that system-
wide return flows connecting upstream to downstream are
unlikely.

Urbanization could result in increased streamflow being
routed to downstream tanks, due to increases in impervi-
ous surfaces, the fallowing of agricultural land in anticipa-
tion of urbanization, and reduced consumptive water use. In-
creased urban water use produces increased urban effluent,
which is discharged to the surface channel network where
it can contribute to increases in tank water storage down-
stream. The observed positive “Year” trends downstream and
on the periphery of the Bangalore urban area are consis-
tent with the substantial increases in Bangalore’s imports
from the Cauvery river, from 185 million L day−1 (million
liters per day) in 1974 to 1350 million L day−1 currently
(BWSSB, 2017). Additionally, as the city has grown, ground-
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water pumping for urban areas has increased to an estimated
600 million L day−1 (Lele et al., 2013). About 40 % of Ban-
galore’s sewage of 1400 million L day−1 flows to Byraman-
gala reservoir (Jamwal et al., 2015). This has contributed to
additional inflows to Byramangala reservoir and more irri-
gated agriculture directly downstream of the reservoir. Tanks
within urban areas can also exhibit drying trends. For in-
stance, tanks may be encroached upon as residential areas ex-
pand. Additional urban wastewater inflow can lead to expan-
sion of algae blooms covering the tank water surface, which
can appear as a “drying” of the tank in this analysis.

4.2 Assessing the classification and model uncertainty

The classification of small tanks in the Arkavathy watershed
poses challenges associated with harmonization of different
Landsat sensors and the variability in the spectral properties
of “wet” tanks due to variations in water quality and veg-
etation extent. The classification tends to overestimate the
amount of water in dry pixels and underestimate the amount
of water in wet and mixed pixels. Because our classification
scheme is designed to avoid bias between images taken with
different Landsat sensors, we likely sacrifice some precision
with sensors from Landsat missions 5 to 8.

Because these mixed pixels lie at the boundary of the wet-
ted tank area, classification error would be sensitive to geo-
registration error in one or both of the Landsat and LISS im-
ages. Error could also arise from our specification that wa-
ter pixels must lie within 60 m of clearly identifiable water
bodies, or the assumptions made during spectral unmixing.
Although the classification scheme accounted for only two
classes, the spectral properties of the land class varied among
dry soil, wet soil, sparse vegetation, and irrigated agricul-
ture. Classification of water was complicated by vegetation
in tanks, varying degrees of turbidity, and algae blooms in
tanks with considerable wastewater inflow.

Errors at the pixel and tank scales are likely unavoidable
given the spectral heterogeneity of both land and water pix-
els. In particular, tanks containing water of variable turbidity,
excessive vegetation, or algae blooms are prone to classifica-
tion errors. Because pixel-scale errors are unbiased, accuracy
at the tank scale improves as tank size increases. Error is fur-
ther mitigated by grouping tanks into clusters in the statistical
model.

The uncertainty of the classification (R2
= 0.99 when all

water bodies are included) is small compared with the un-
certainty of the statistical model (R2

= 0.68). Although the
results of our statistical model imply a non-trivial amount of
unexplained variation, Gardelle et al. (2010) reported similar
performance (R2

= 0.78) for a model relating precipitation
and water extent in a single lake, and noted that the cor-
relation was valid only for a 9-year subset of the 5-decade
study period. The sources of uncertainty include the com-
plex hydrological processes that relate precipitation, stream-
flow, and tank water storage, as well as the nonlinear and

heterogeneous relationship between water extent and water
storage, the neglect of pre-monsoon tank water extent in the
model, and the non-stationary behavior of dry-season losses
in the two northernmost watersheds. Given this uncertainty,
results of our analysis are reasonable given the simplicity of
the model and the complexity and heterogeneity of the wa-
tershed hydrological response.

5 Conclusions

The Arkavathy watershed embodies many of the water secu-
rity challenges confronting southern India. With data limita-
tions hampering the characterization of changing water sup-
plies in the watershed, remote sensing tools provide insights
into the history and spatial pattern of change in water avail-
ability and hydrological function. We were able to take ad-
vantage of a pre-existing “sensing network” provided by the
irrigation tank system throughout the Arkavathy watershed.
The high number of tanks in this watershed allowed for a
comparison of hydrological change with land use at spatial
scales appropriate for a first-order analysis.

The analysis reveals that while inter-annual variations in
tank water extent are dominated by inter-annual variation
in precipitation, an independent time trend in tank water
extent occurs for a subset of the watershed. This trend is
not spatially homogeneous, but varies in its magnitude and
sign among different regions of the watershed. These dif-
ferences appear to be associated with differing patterns of
land use across the watershed. A comparison of the hydro-
logical trends with agricultural practices within the TG Halli
watershed showed that declines in tank water extent over
time, controlling for precipitation, are more closely associ-
ated with groundwater-irrigated agriculture than other kinds
of land use, including Eucalyptus plantations. This associ-
ation is consistent with hypothesized effects of groundwa-
ter depletion on streamflow generation in the Arkavathy, and
with the potential influence of check dams in fragmenting the
surface flow network (Srinivasan et al., 2015). Further inves-
tigation could attempt to attribute the cause of the inferred
streamflow decline, either via a more sophisticated statisti-
cal analysis considering the many potential drivers of change
or via a mechanistic model of catchment hydrological func-
tioning. Ideally such analysis would also separate the rela-
tive effects of loss of baseflow due to groundwater pumping
and conversion of surface flows to groundwater recharge via
check dams.

Surface networks of rainwater harvesting structures are
employed in seasonal climates worldwide, whether in cas-
cading tank systems in southern India and Sri Lanka, or hill-
slope farm dams in Australia (Callow and Smettem, 2009;
Roohi and Webb, 2012), northeastern Brazil (Lima Neto
et al., 2011; Malveira et al., 2012; de Araújo and Medeiros,
2013; de Toledo et al., 2014), South Africa (Hughes and
Mantel, 2010), the US Great Plains (Womack, 2012), and
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China (Xiankun, 2014; Xu et al., 2013). Capitalizing on these
networks as proxy indicators of rainfall and streamflow vari-
ation, as in the Arkavathy, could prove a valuable approach
to circumventing problems of data scarcity and characteriz-
ing changing hydrological conditions.

Data availability. The results of the Landsat remote sensing classi-
fication and statistical model are available on hydroshare.org (Penny
et al., 2017), including georeferenced tank locations, water extent
time series for each tank, and the covariates and results from the
multiple regression of water extent.

The Supplement related to this article is available online
at https://doi.org/10.5194/hess-22-595-2018-supplement.
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