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Abstract

Remotely sensed data represents key information for character-
izing and estimating biodiversity. Spectral distance among sites
has proven to be a powerful approach for detecting species
composition variability. Regression analysis of species similar-
ity versus spectral distance may allow us to quantitatively
estimate how beta-diversity in species changes with respect to
spectral and ecological variability. In classical regression
analysis, the residual sum of squares is minimized for the
mean of the dependent variable distribution. However, many
ecological datasets are characterized by a high number of
zeroes that can add noise to the regression model. Quantile
regression can be used to evaluate trend in the upper quantiles
rather than a mean trend across the whole distribution of the
dependent variable. In this paper, we used ordinary least
square (OLS) and quantile regression to estimate the decay of
species similarity versus spectral distance. The achieved decay
rates were statistically nonzero (p < 0.05) considering both OLS
and quantile regression. Nonetheless, OLS regression estimate of
mean decay rate was only half the decay rate indicated by the
upper quantiles. Moreover, the intercept value, representing the
similarity reached when spectral distance approaches zero,
was very low compared with the intercepts of upper quantiles,
which detected high species similarity when habitats are more
similar. In this paper we demonstrated the power of using
quantile regressions applied to spectral distance decay in order
to reveal species diversity patterns otherwise lost or underesti-
mated by ordinary least square regression.

Introduction
Distance decay of species similarity has long been recog-
nized as a powerful approach for describing species
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diversity patterns and detecting ecological and geographi-
cal gradients (Nekola and White, 1999). This is related to
the first law of geography dating back to 1970, i.e., sites
that are closer in distance are expected to be more similar
despite the attribute being considered (Tobler, 1970).
The proximity of sites in a biological classification is
expected to decrease with spatial distance (Soininen

et al., 2007). Generally, this law may be applied at global
to continental scale where distance may act as a limiting
factor related to dispersal limitation of species and cli-
matic conditions which should rule out species turnover,
hereafter referred to as beta-diversity (Whittaker, 1972).

However, at regional and more generally local scale,
distance may not act as a determinant factor in discrimi-
nating species diversity since it may be related to both
dispersal and ecological heterogeneity. As an example,
one could imagine a highly interspersed landscape with
several different habitats therein. In such a case, sites
which are spatially close to each other may be more
dissimilar than expected by only considering spatial
distance. Within a regression model of species similarity
versus distance it would be expected that there would
only be a weak trend (Rocchini, 2007a). In fact, in this
case, since habitats are highly interspersed to each other,
a constant and high degree of species diversity from one
site to the other will be achieved despite the distance
being considered.

In this view, Tuomisto et al. (2003) and Rocchini
(2007a) tested the use of alternative distance measures such
as spectral distance rather than spatial distance in order to
quantitatively detect the variability in species diversity over
space. Spectral distance is expected to be directly related to
ecological variability. In fact, the higher the ecosystem
diversity the higher the spectral heterogeneity as measured
by distance in spectral space. According to the Spectral
Variation Hypothesis (Palmer et al., 2002; Rocchini
et al., 2004; Rocchini, 2007b) measuring spectral heterogene-
ity of the uppermost cover may be a potential proxy of
understory plant community diversity, as strictly related to
ecosystem heterogeneity. In fact, theoretically, differences in
environmental properties of different habitats should lead to
differences of spectral responses, which can be detected by
satellite imagery.

While Nagendra and Gadgil (1999) and Tuomisto
et al. (2003) found only a weak relationship between
species similarity and spectral distance, Rocchini (2007a)
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demonstrated the power of using upper regression quan-
tiles rather than ordinary least square (OLS) regression for
finding high, statistically non-zero slopes, when consider-
ing the decay of maximum similarity rather than its mean.
Nonetheless, the use of quantile regression has been
poorly examined for remotely sensed data applications.
Moreover, spectral distance decay has thus far been tested
only for few habitat types and biogeographical areas such
as the Amazonian rain forest (Tuomisto et al., 2003) and
the Mediterranean basin forests (Rocchini, 2007a).

Dry tropical forest habitats provide an interesting and
different environment within which to explore these ques-
tions. These habitats are among the most endangered in the
world (Gillespie, 2005). High rates of endemism, combined
with landscape fragmentation and human pressure make
these areas particularly challenging to study (Nagendra
et al., 2006). The difficulty of conducting field studies in
many of these environments makes remote sensing an
attractive tool for this purpose. Yet, due in large part to the
challenges of working in such environments, as well as the
fact that these remain unfortunately less attractive to many
conservation interests compared to the better studied moist
tropical counterparts, the use of remote sensing for biodiver-
sity assessment in the dry tropics remains little explored
(Sanchez-Azofeifa et al., 2003; Gillespie et al., 2006 and
2008). While these forests have greater species diversity
compared to many temperate forests, they have lower
diversity and relatively simpler forest structures compared
to their moist tropical counterparts, thus providing a
challenging but manageable testing ground for associating
remote sensing data with species beta-diversity.

The aim of this paper is to examine the potential of
using quantile rather than OLS regression in modeling
spectral distance decay in a dry tropical forest in central
India. The region of study is located within a protected tiger
reserve in India that constitutes a critical habitat for wildlife
and associated plant habitat conservation (Sanderson
et al., 2006). Thus, understanding the distribution of species
beta-diversity in this area is a challenge that is critical for
conservation.

Study Area

The Tadoba-Andhari Tiger Reserve (TATR) is located in
central India, in the state of Maharashtra (Figure 1). The
TATR consists of a national park and wildlife sanctuary that
extends over 625 km?, and is located between 20°04'53" to
20°25'51" N and 79°13'13” to 79°33'34" E. The landscape is
largely a matrix of dry tropical forest, with an interspersion
of grasslands, water bodies and small patches of riparian
forest alongside streams. The dominant tree species include
Teak (Tectona grandis), Ain (Terminalia alata), Tendu
(Diospyros melanoxylon), Moha (Madhuca indica), and
Garadi (Cleistanthus collinus). The northern section is hilly,
gradually diminishing in elevation as one moves south with
an elevation range from 212 to 350 m above sea level. The
largest water body in the TATR, the Tadoba lake, lies at the
basin of this hill range, giving to a number of small peren-
nial and seasonal streams. The temperature varies between
about 3°C in winter (December), to about 48°C in summer
(May). The monsoon season extends between June and
September, and the average annual precipitation is about
1,175 mm. There are six villages within the reserve, and

53 villages located on the periphery, whose inhabitants also
depend on the protected area for fuel, fodder, timber and
other non-timber forest produce requirements. While the
park is more fragmented and impacted by the villages
located on the northern and western boundary, the southern
and eastern sides are surrounded by Reserve Forest and
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Protected Forest areas, and are less degraded. Thus there is
variation in species composition within the protected area
due to differences in habitat, climatic factors, topography,
and human disturbance, offering an interesting testing
ground for the exploration of questions related to the
assessment of species beta-diversity.

Methods

Field Data Collection

We used circular plots distributed by a stratified sampling
design in order to cover a variety of vegetation types and to
sample variations in biodiversity across the TATR. A nested
approach was used for sampling, with the outermost plot of
10 m radius used to record the species identity of all trees
(individuals greater than 10 cm diameter at breast height
(DBH)). Since the vegetation cover is quite dense in parts of
the landscape, sampling using these protocols resulted in
the recording of as many as 18 trees in a 10 m radius plot,
and as many as 25 individual stems in a 3 m radius sub-
plot, confirming that the size of the plot and cut off DBH for
sampling trees is appropriate for sampling vegetation in this
landscape. Plots of the same size have been used effectively
for biodiversity studies in nearby, similar dry tropical forest
habitats (Ghate and Nagendra, 2005). A nested subplot of 3
m was used to record the species identity of all individuals
in the sapling/shrub layer (DBH less than 10 cm but greater
than 1 cm). Sampling was conducted between 2003 and
2005. Plots were distributed at a range of distances from the
settlements within and outside the protected area (Figure 1).
Such a sampling strategy enables us to sample the variation
in biodiversity within the park, from relatively undisturbed
core areas to degraded areas adjacent to the park outer
boundary (Nagendra et al., 2006). A total of 240 plots were
sampled. A few of these were omitted from analysis due to
(a) their being outside the image location, or (b) difficulties
in recording plot locations accurately. Therefore, a total of
211 plots were retained for further analyses.

Spectral Values

A Landsat ETM+ image acquired during 29 October 2001
(spatial resolution 28.5 meters, band from 1 to 5 and 7)
covering the whole study area was downloaded from the
Global Land Cover Facility site hosted by the University

of Maryland (www.glcfapp.umiacs.umd.edu, see Tucker

et al., 2004 for major details; see Figure 1). The image was
georeferenced to five 1:50 000 scale Survey of India topo-
graphic maps covering our area of interest, using the nearest
neighbor resampling algorithm (see Lillesand et al., 2004).
The accuracy of image registration was maintained within
15 m. However, since the combination of image registration
and plot georeferencing error can give rise to positional
inaccuracies of the scale of a 30 m Landsat pixel, each plot
point was related to a 3 X 3 pixel window of Landsat
imagery rather than to a single pixel. All image processing
was carried out using the ERDAS Imagine® image processing
software. No radiometric correction was applied to the
image on the strength of the low elevation range. Moreover,
although atmospheric effects modify actual reflectance
values, the spectral differences in satellite images indicate
differences in reflectance characteristics of the ground and
vegetation cover (Tuomisto et al., 2003), therefore ensuring
ecological variability will be detected (see Chavez (1988),
Cihlar et al. (2000), and Song et al. (2001) for a major
explanation of atmospheric correction issues). As previously
stated, considering both geometric and radiometric issues,
rather than using the spectral value of each ETM+ band,
each plot was related to the mean DN derived from a 3 X 3
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Figure 1. Flowchart representing the whole analysis process. Once the Landsat ETM+ overlapping the

Tadoba-Andhari Tiger Reserve (TATR), central India, has been selected and georeferenced, the mean DN
derived from a 3 X 3 pixels window of each band was attached to each field plot. Here, a derived IRI
image is shown for graphical purpose only but bands 1 to 5 and 7 were used. White points represent
plots while the black line represents the TATR boundary. Once species and spectral distance between

pair-wise of plots have been calculated, a distance decay model may be built in order to estimate the
beta-diversity of the area by both oLs and quantile regression.

window of each band. The six ETM + bands used repre- strength of its widespread use (see Legendre et al. (2005) for
sented a six-dimensional space for calculating spectral details on species diversity metrics).
distance, in order to build distance decay models. Let A and B be two sets of species; the Jaccard index is

calculated as:

Distance Decay Models
Species composition similarity between pairs of plots was C = ANB 1)
calculated by using the Jaccard coefficient (C), on the / AUB
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with C; ranging from 0, indicating perfect dissimilarity, to 1,
indicating perfect similarity. Thus, the higher the number
of species in common, the higher will be the numerator
term AN B. A semi-matrix of the pair-wise compositional
similarity between plots was then built by vegan R-package
(Oksanen et al., 2007). According to previous papers on the
matter (see Legendre et al., 2005 and references therein) two
plots containing no species were removed from the analysis
due to the conceptual impossibility of calculating C; when
plots have no species (empty sets). Thus, the whole analysis
was performed using a number of plots N = 209, leading to
a semimatrix of (N*(N-1)/2) = 21,736 distances. At the same
time, a semi-matrix of pair-wise spectral distances between
plots was derived (once again using the above cited 209
plots). Finally, compositional similarity was plotted against
spectral distance, in order to check for a possible relation
(distance decay).

Linear models using both Ordinary Least Square (OLS)
and quantile regression (at various quantiles 7 = 0.99, 0.95,
0.90, 0.75) were fit to the data. Accordingly, the decay in
species compositional similarity is described as:

S=8,—cd (2)

where S = similarity at distance d, S, = initial similarity
or similarity at distance 0, and ¢ = decay rate. Quantile
regression analysis was performed with the quantreg
R-package (Koenker, 2007). In order to calculate confidence
intervals we applied a bootstrapping approach using the
boot.rq function (quantreg R-package; see Koenker (2007))
for quantile regression and the bootpred function (bootstrap
package; see Efron and Tibshirani (1994) and Leisch (2007))
for OLS. Figure 1 summarizes the whole data gathering and
analysis procedure.

Results

The achieved decay rates were statistically nonzero (p < 0.01)
considering both OLS and quantile regression with all =
values (Figure 2, Table 1). As hypothesized by several
authors (see e.g., Nagendra, 2001; Rocchini et al., 2005;
Foody and Cutler, 2006), spectral distance represents a direct
effect of environmental properties thus representing a
powerful tool for gradient analysis and species diversity
comparisons.

The OLS regression estimate of mean decay rate was
only one-half to one-third the decay rate indicated by the
upper quantiles (Table 1). Moreover, intercept value
representing the similarity reached when spectral distance is
zero was very low values (0.136) compared with upper
quantiles, which detected high values of similarity when
habitats were more similar, i.e., they have a similar spectral
behavior.
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Figure 2. The decay of species similarity versus spectral
distance. Ordinary least square (solid line) and quantile
regressions (dashed lines) considering four different
(from upper to lower lines: 0.99, 0.95, 0.9, 0.75) were
applied. The 21,736 points within the scatterplot
represent pair-wise spectral distances and species
similarity distances between 209 input plots.

Discussion
In this paper, we propose that one should consider estimat-
ing upper quantile regressions before dismissing statistically
non-significant relations based on OLS regression estimates.
For instance, in the example shown in this paper, a low
slope may be found by OLS regression but a higher one may
be detected by quantile regression stressing maximum
differences in species similarity in order to identify the
extremes of the environmental gradients, which should
control differences in species composition and richness
among sites (Rocchini et al., 2005).

In most cases, distance decay models are derived by
OLS regression between species similarity as the dependent
variable versus a measure of distance as the explanatory
variable, herewith including spectral distance. In classical
regression analysis, the residual sum of squares is mini-
mized within a regression model for the mean of the
dependent variable distribution. However, many ecological
datasets, and in particular those related to communities,

TABLE 1. LINEAR MODELS CONSIDERING BOTH ORDINARY LEAST SQUARE AND QUANTILE REGRESSION AT DIFFERENT
QUANTILES T; SAMPLE SIZEN = 21,736
intercept decay decay rate
boundaries rate (c) boundaries
Regression type T intercept (S,) (CI 99%) 1074 (CI 99%)*10°*
Ordinary least square - 0.136""" 0.134-0.138 9.2""" 7.0-11.4
Quantile 0.75 0.206""" 0.204-0.208 10.7°"" 8.9-12.5
0.90 0.295""" 0.288-0.302 9.9"" 4.0-15.8
0.95 0.389""" 0.379-0.399 15.9""" 10.2-21.6
0.99 0.583""" 0.512-0.654 31.2°"" 5.4-57.0
“p<o0.01
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are characterized by a high number of zeroes (Schroder

et al., 2005) that can add noise to the regression model. In
these cases, quantile regressions can be used to evaluate
trends in the upper quantiles rather than a mean trend
across the whole distribution of the dependent variable
within a regression model (Koenker and Bassett, 1978;
Koenker and Hallock, 2001; Cade and Guo, 2000; Cade and
Noon, 2003), i.e., by estimating the regression model on
quantiles 7 rather than estimating the mean for the entire
cloud of points. Moreover, estimating an interval of regres-
sion quantiles provides a comprehensive description of
biological response patterns for exploratory and inferential
analyses (Cade et al., 1999). The mean regression model
(OLS regression) can be regarded as an average across all the
quantile regression models. When there is heterogeneity in
decay rates, the mean regression model will fail to convey
information on the lower and higher decay rates associated
with lower to higher quantiles.

A basic question concerns the additional information
content brought by spectral distances over more conven-
tional, and easily computable, spatial distances. In fact, from
a biological point of view, spatial distance generally acts as
an ecological limiting factor accounting for the dispersal of
both plant and animal species (Chust et al., 2006). Neverthe-
less, as stressed by Palmer (2005), methods based on distance
decay do not necessarily account for environmental hetero-
geneity, especially in heavily fragmented landscapes. Thus,
explicitly accounting for environmental difference may
be of benefit when modeling species diversity gradients
(Qian, 2008).

In this paper, the noise found within regression models
of species similarity against distance are a direct effect of
the dimension of sampling units (10 m radius). In fact, if
grain is small enough, one might expect that samples should
share no or few species, even if their ecological properties
are the same (Chao et al., 2005; Steinitz et al., 2006). From
this point of view, quantile regressions have proven to be
a robust, straightforward approach for modeling the com-
plexity of ecological data, especially when dealing with
data collected in the field (Cade et al., 2005; Schroder
et al., 2005).

Conclusions
In this paper, the key role of spectrally derived distance in
characterizing species similarity decay has been demonstrated.
In fact, according to the niche difference theory (see Nekola
and White, 1999) sites which are more different in their
environmental properties should share no or few species thus
showing a lower species similarity (also see Rocchini, 2007a
and references therein). Spectral distances among sites
represent a good proxy of environmental gradients. In
particular, as stressed by Rocchini et al. (2005) the extremes
of the environmental gradient, and not its average condition,
are important in controlling differences in species composition
among the sites. Thus, stressing the decay of maximum
species similarity rather than its mean should lead to a better
approximation of actual conditions in environmental hetero-
geneity. In this view, quantile regression can provide an
approximation that is more consistent with ecological gradient
detection by providing estimates for all parts of the data
distribution rather than just for the center, which should
smooth species variability estimates (Cade et al., 1999).
Soininen et al. (2007), who dealt with distance decay
modeling, recently claimed that there was a need for more
sophisticated analytical methods to account for environmen-
tal distance and decouple it from spatial distance. This
need seems to be solved by applying quantile regression to
spectrally-based distance decay.
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