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Large mammals are declining globally due to habitat loss and fragmentation. Climate change is one of the factors
known to alter the range of several mammalian species. An early understanding of the effect of climate change
on species distributions can provide critical information for conservation planning. Nilgiritragus hylocrius (Nilgiri
Tahr) is an endangered ungulate that is restricted to the montane grasslands of the Western Ghats, India.
Currently, the Nilgiri Tahr is restricted to a fraction of its former range and is also prone to risks due to several
ongoing anthropogenic pressures. However, the impact of global climate change on this emblematic species has
seldom been estimated. The goal of our study was to use ecological niche models to quantify the effect of climate
change on the habitats of Nilgiri Tahr. Using the maximum entropy (MaxEnt) algorithm, we modelled the po-
tential distribution of Nilgiri Tahr in its native range. The models were developed under the current climatic
conditions and then projected onto two future climate change scenarios (RCP4.5 and RCP8.5) and for three
different time frames in the future (years 2030, 2050 and 2080). We identified that most of the climatically
suitable habitats of Nilgiri Tahr would become unsuitable when global warming intensifies. Our models pre-
dicted a complete loss of suitable habitats in many existing protected areas in the Western Ghats. We use insights
provided by our modeling results to propose conservation management plans to increase the likelihood of
persistence of Nilgiri Tahr in the Western Ghats.

1. Introduction

The 21st century is predicted to witness rapid changes in climate,
which will have tremendous impacts on biodiversity at multiple levels
(Cordellier et al., 2012). Studies indicate that in lieu of proper miti-
gation measures, the median global annual mean temperature may rise
to 4 °C by 2100 (Warren et al., 2013). Severe reduction in species range
size and abundance are the major predicted consequences of this cli-
mate change (Malcolm et al., 2006; Thomas et al., 2004; Warren et al.,
2013). In case of large mammals, habitat loss, human wildlife conflicts,
land use change, dispersal limitations and hunting along with rapid
climate change have been identified to increase their extinction risk
throughout the world (Adams-Hosking et al., 2015; Hoffmann et al.,
2015; Schloss et al., 2012). Adopting sophisticated approaches to
identify the species likely to be at risk and mapping the latent extinction

* Corresponding author.
E-mail address: sandeep.sen@atree.org (S. Sen).

https://doi.org/10.1016/j.ecoleng.2018.06.017

risk, are critical for avoiding defaunation, especially in the present era
of climate change (Dirzo et al., 2014).

One way to predict the latent threat to species due to climate change
is to use ecological niche models (ENMs) to predict a species’ potential
distribution under various scenarios of environmental change.
Theoretically, ENMs use the relationship between a species and its
habitat to identify a species’ potential distribution at un sampled lo-
cations (Guisan and Thuiller, 2005). Niche based models are in-
formative in delimiting a species’ ecological requirements and pre-
dicting potential suitable habitats by using the known distribution of a
species (spatial coordinates) with a given set of environmental variables
(Graham et al., 2004; Peterson, 2006). These models are used widely to
predict and quantitatively estimate the impact of projected climate
warming (Adams-Hosking et al., 2015; Aragon et al., 2010; Bleyhl et al.,
2015; Khanum et al., 2013; Kujala et al., 2013; Legault et al., 2013; Luo

Received 11 September 2017; Received in revised form 16 June 2018; Accepted 18 June 2018

0925-8574/ © 2018 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/09258574
https://www.elsevier.com/locate/ecoleng
https://doi.org/10.1016/j.ecoleng.2018.06.017
https://doi.org/10.1016/j.ecoleng.2018.06.017
mailto:sandeep.sen@atree.org
https://doi.org/10.1016/j.ecoleng.2018.06.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoleng.2018.06.017&domain=pdf

R.K. Sony et al.

et al.,, 2015; Rodder and Weinsheimer, 2009; Rubidge et al., 2011;
Ulrey et al., 2016).

The Western Ghats is considered as one of the hottest biodiversity
hotspots in the world (Cincotta et al., 2000, Myers et al., 2000). These
mountains provide critical habitats for several endemic flora and fauna
(Myers et al., 2000). Recently the native species in Western Ghats are
undergoing several threats as a result of anthropogenic pressures, such
as land use land cover changes, presence of invasive species, forest fire
etc. A study by Gopalakrishnan et al., 2011 shows that under the A1B
scenario the forests of central and Northern Western Ghats. are vul-
nerable to climate change, while another study by Krishnakumar et al.
(2011) shows that the tropical evergreen forests of Southern Western
Ghats are shown to be resilient with a predicted increase in its rainfall.
Even though such studies exist the role of global climate change in the
endemic mammal species of Western Ghats have been less explored.
However, few studies from this region highlights the importance of
climate change in altering distributions of its endemic species using
niche modeling approaches (see Sen et al., 2016a, 2016b). The results
are alarming which shows a decline in their future suitable habitats.

Nilgiritragus hylocrius (henceforth mentioned as ‘Tahr’) is an en-
dangered mountain ungulate that belongs to the subfamily Caprinae
(Ropiquet and Hassanin, 2005). Tahr is the only mountain ungulate in
South India among the 12 ungulate species that occur in India (Fox and
Johnsingh, 1997; Predit et al., 2015). The tahr is endemic to the Wes-
tern Ghats-Sri Lanka biodiversity hotspot it is restricted to the montane
grasslands (Myers et al., 2000). Historically, the species occurred
throughout the Western Ghats, which is now restricted to around 3000
individuals in less than one-tenth of its former range in Kerala and
Tamil Nadu states in the southern Western Ghats within an altitude
range of 1100 m to 2695 m. However, the Tahr populations declined
over the years due to hunting, conflict with livestock grazing and ha-
bitat loss (Esa et al., 2010; Predit et al., 2015; Rice, 1984; Schaller,
1970). In addition, Sukumar (2000) highlighted the importance of cli-
mate mediated habitat loss of Tahr resulting in the reduction of natural
grasslands in the Western Ghats. Despite this, there has been no further
research on predicting the impact of global climate change on this
species, which is essential for long-term conservation planning.

In this study, we used maximum entropy modeling approach
(MaxEnt; Phillips et al., 2006) to estimate the amount and distribution
of potential suitable habitat for Tahr both under current climate and
future climate change scenarios; and provide suggestion to identify
areas for conserving the existing populations.

2. Materials and methods
2.1. Study area and occurrence records

The study was conducted in the Western Ghats biodiversity hotspot
(between 8° N to 12° N latitudes) of peninsular India from 2010 to 2011
where Tahr inhabits the montane grasslands of the southern Western
Ghats above an elevation of 1100 m (Fig. 1). The existing habitats of the
Tahr were identified from the previous literature and in consultation
with the experts and forest officials. The experts included the scientists
and researchers who have previously worked on Tahr. The number of
existing Tahr habitats identified counted upto ten. These ten Tahr ha-
bitats were visited and repeatedly searched for the presence of the
species for an average of five days per locality. The survey team con-
stituted of three to six individuals- with one or more species expert, and
forest officers. The total number of animals sighted were counted and
noted down The geographic coordinates were marked from the nearest
locations possible from the first sighting of the animal. Indirect evi-
dence such as the presence of pellets was also considered and geolo-
cated under reliable circumstances. Other than this primary data from
ten Tahr habitats, secondary data points were collected from reliable
published sources (See Supplementary file S1 for complete dataset).

For developing ENMs, the study area was divided into 236,269 map
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pixels of 1km? resolution which collectively encompass the known
distribution area of Tahr. A total of 318 known Tahr occurrence were
collected from primary and secondary data sources.

2.2. Environmental covariates

A set of 23 candidate predictor variables that characterize the en-
vironment surrounding Tahr locations were chosen for modeling the
impact of climate change. Predictors included 19 bioclimatic variables
available from WorldClim data set (Hijmans et al., 2005; http://www.
worldclim.org) and aridity (measure of humidity, http://csi.cgiar.org/
aridity/) three topographic variables altitude (http://www.worldclim.
org), slope aspect (calculated using ArcGIS version 10.3 (ESRI 2013),
were included in model fitting. All variables were treated as continuous
for the current study. Northness (sin(aspect*pi/180)) and eastness (cos
(aspect*pi/180)) were calculated using ArcGIS version 10.3 (ESRI
2013) and incorporated as separate predictor variables. The final set of
variables where chosen carefully after accounting for multicollinearity
among the predictors. This was done by calculating Pearson’s correla-
tion coefficient, |r| < 0.70) and the variance inflation factors (VIFs)
using R (package usdm, Naimi, 2013). Predictor variables with
VIFs > 5 were removed from the analysis since even mildly correlated
layers are known to influence the accuracy of species distribution
models (Veloz, 2009).

2.3. Model building and validation

To reduce the effects of spatial autocorrelation among the occur-
rence points, we first calculated the climatic heterogeneity of the study
site using principal component analysis (PCA) of all the climatic vari-
ables. A climate heterogeneity map was then developed by combining
the three principal component axes using SDMToolBox (Brown, 2014).
The spatial aggregation among occurrence records within an area was
then subsequently reduced by spatially filtering the occurrence records
(Boria et al., 2014). After removing spatially auto-correlated occurrence
points and reducing multiple occurrence records in single cell, the total
number of occurrence points was reduced to 169 from 318 (See
Supplementary file Fig. S2).

To develop climatic habitat suitability maps, we used a maximum
entropy modeling approach implemented in the software program
MaxEnt (version 3.3.3k; Phillips et al., 2006). We performed 10-fold
cross-validation tests with 5000 iterations; the convergence threshold
being set to 1 X 10~ °. A logistic output was chosen, which can be in-
terpreted as the probability of presence of a species given the en-
vironmental variables (Merow et al., 2013). Current models were tuned
by varying the regularization multiplier (RM) values from 1.0 to 2.5. An
increase in the value of RM reduces model complexity by reducing the
number of parameters entered into the model (Phillips et al., 2006). The
complexity of the current models was further varied by changing dif-
ferent feature types (i.e., linear, product, quadratic and hinge) in
MaxEnt (Table 1). We used the R package ENMeval (Muscarella et al.,
2014) to tune the best current model. The model with lowest omission
rates was chosen for the future projections. Jackknife tests were used to
evaluate variable importance. We employed a logistic threshold of
minimum training presence for converting continuous MaxEnt predic-
tions to binary layers (i.e., suitable/unsuitable habitat). We selected
this conservative threshold for two reasons. (1) omission of some oc-
currences from the training were not appropriate for the current da-
taset. and (2) the goal of the study was to identify suitable areas to
conserve an endangered species, where an over estimation is considered
to be less dangerous than missing areas of suitable habitats.

The location data in our study may be biased due to logistical rea-
sons, as a result our sampling across the geographic range of Tahr can
be non-random. For example, use of Tahr locations from the secondary
data sources can result in over representation of few localities. The
systematic sampling efforts in general can also be geographically biased
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Fig. 1. Sampling locations of Nilgiri Tahr in the Western Ghats mountain chains in India.

towards readily accessible areas. Hence, to account for the sampling
bias in the location data, a bias grid was created by calculating Gaussian
kernel density of sampling localities using SDMtoolbox (Supplementary
file Fig. S3). In the bias file, values of 1 reflect locations with no sam-
pling bias, whereas higher values represent higher sampling bias in the
landscape (Elith and Leathwick, 2009). Fifteen different models were
developed with varying levels of complexity and different regulariza-
tion multiplier values. The best model with smallest omission rate was
selected for future projections. Model outputs from both scenarios were
compared using a niche identity test implemented in ENMTools V1.3.
(Warren et al., 2010).

2.4. Forecasting habitat changes in response to climate change

For future climate projections, climatic layers were downloaded
from the Consultative Group on International Agricultural Research’s
(CGIAR) Research Program on Climate Change, Agriculture and Food
Security (CCAFS) climate data archive (data available from http://
www.ccafs-climate.org/data/). The future climate projections are based
on representative concentration pathways or RCPs (IPCC, 2014), which
assume different greenhouse gas concentration trajectories based on a
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range of radiative forcing. The RCP 4.5 represents an optimistic emis-
sion scenario, where emissions will peak around 2040 and then decline,
and RCP 8.5 assumes increased greenhouse gas emission throughout the
21st century. We developed the models for three future time periods
2030s (2021-2050), 2050s (2040-2069) and 2080s (2070-2099) for
both the RCPs. In order to reduce the uncertainty in global circulation
models (GCMs), we developed models for the future using four GCMs.
These models were based on layers developed by Hadley Coupled
Model V3 (HadCM3_AO), Canadian earth system model (canesm2),
Model for Interdisciplinary Research on Climate (MIROC-ESM) and
Commonwealth Scientific and Industrial Research Organization
(CSIRO_MK). The topographic layers were treated as static during the
future projections. The dynamic non-climatic variables that are ex-
pected to change in future were included in the model. These layers
were also treated as static for the future projections (see Stanton et al.,
2012). The reliability of future predictions was checked by performing
a multivariate environment similarity surface (MESS) analysis (Elith
and Leathwick, 2009). This analysis was performed in order to check
where novel climate exists in the MaxEnt predictions. MESS also in-
dicates the locations where future models can be the most uninformed
(Elith and Leathwick, 2009). Further, to understand the degree of
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Fig. 2. Climatic habitat suitability for Nilgiri Tahr in Western Ghats under the current climatic conditions predicted using MaxEnt. The warmer colors indicate areas

with high suitability scores.

extrapolation we examined the results of most dissimilar variables
(MOD) analysis in MaxEnt.

Model performances were evaluated using two metrics, AUC (Area
under the receiver operating characteristic (ROC) curve) and TSS (True
Skill Statistics). AUC is a threshold-independent metric which measures
the models’ ability to distinguish between random and background
points. Usage of AUC alone for evaluating model performance has been
widely criticized (Austin, 2007; Lobo et al., 2008). A high AUC score
does not always reflect that the models are highly informative (Phillips
et al., 2006). Hence, TSS scores were calculated, which is a threshold
dependent measure of accuracy. TSS is defined as sensitivity + speci-
ficity — 1, where sensitivity and specificity are calculated based on the
probability threshold for which their sum is maximized (Allouche et al.,
2006).

3. Results
3.1. Model building and validation

The best model included five bioclimatic variables (Precipitation of
Wettest Month, Precipitation of Driest Quarter, Precipitation of
Warmest Quarter, Isothermality and Temperature seasonality), and four
topographic layers (altitude, slope, Northness and Eastness) after the
cross correlation tests (see Supplementary Table T1 and Fig. S1). Fur-
thermore, the choice toretain the precipitation variables were not ar-
bitrary. These variables are known to affect the net primary pro-
ductivity of grasslands in general, and the grasslands where Tahr
inhabit areas which receives an annual rainfall of over 1500 mm with
relatively short dry seasons. The final model had a combination of
linear, quadratic, and product features (L,Q,P) and a regularization
multiplier value of 2. All the models during the tuning experiments
performed better than random. The best performing model had an
average AUCcv = 0.859 and TSS value of 0.609. Precipitation of the
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Table 1

Summary of model evaluation statistics for Nilgiri Tahr using ENMeval with
varying model complexities. L,Q,P,T,H are the linear, product, threshold, and
hinge features in MaxEnt. RM is the regularization multiplier. AUCcy represents
the mean AUC values for the 10-fold cross validated models developed during
the evaluation process. TEST OR represents the omission rates at 0% and 10%.
The models were ranked based on the omission rates.

MaxENT Variables RM AUCcv TESTOR TEST OR Rank
Features 0% 10%
LH slope, bio4, bio3, 1 0.862 0.011 0.159 4
biol3, biol7, biol8,
altitude
LH 2 0.861 0.017 0.155 8
LH 1.5 0.862 0.173 0.095 14
LQH 1.5 0.869 0.011 0.165 5
LQH 1 0.863  0.017 0.182 11
LQH 2 0.863 0.0173 0.126 12
LQP 2 0.862 0.005 0.124 1
LQP 1.5 0.862 0.011 0.108 2
LQP 1 0.859 0.0118 0.13 6
LQPT 2 0.874 0.011 0.154 3
LQPT 1 0.87 0.0118 0.263 7
LQPT 1.5 0.875 0.11 0.17 13
LQPTH 1 0.871 0.005 0.258 5
LQPTH 1.5 0.871 0.017 0.16 9
LQPTH 2 0.871 0.017 0.16 10
3 slope
o)
©  bio4
s
> bio3H category
g bio18 - . with variable
g bio13 4 . without variable
c
£ altitude |
S
ch bio17 A
T T T T T
0.0 0.1 0.2 0.3 04

Regularized training gain

Fig. 3. Jackknife test showing the relative importance of different environ-
mental predictors in MaxEnt models for Nilgiri Tahr.

driest quarter (biol7), temperature seasonality (bio4) and precipitation
of the wettest month (biol3) and precipitation of warmest quarter
(bio18) had the highest effect on predicting Tahr habitats compared to
the other predictors estimated by jackknife test (Fig. 3). This suggests
the importance of precipitation variables in determining the distribu-
tion of Tahr. For example, the logistic output (interpreted as portability
of presence) of Tahr peaked towards the higher value of the variables,
precipitation of warmest quarter (biol8) and precipitation of driest
quarter (biol7). Similarly, for the variable, precipitation of wettest
month (biol3), the probability peaked on values ranging from 1500 to
3000 mm (Fig. 4). We found that the probabilities peaked around low
values of temperature seasonality (bio4) which suggests that Tahr
species select climatically stable areas. The climate-topography model
also performed well with an average AUC,, = 0.864 and TSS = 0.584.
Niche identity test of both the climate-topography and the combined
models showed 98.2% similarity across models. This test suggests that
there were no significant changes in the model outcomes while using
vegetation layers as predictors along with climatic variables when
compared to a climate-topography model (Supplementary file Fig. S4).

3.2. Characteristics of realized niche in current and future scenarios

The results from all the GCMs were congruent and showed a de-
crease in suitable habitats for all the future projections. The final future
predictions were obtained by an ensemble approach (averaging results
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of the two models) (Araujo and New, 2007). Current suitable habitats
were predicted from 8° to 12° latitudes in the Western Ghats region of
Southern India. The montane grasslands in the Western Ghats are the
most suitable habitat in the current scenario (Fig. 2). The model pre-
dicted 21,448 km? as suitable in the current scenario within the Wes-
tern Ghats. When projected to future time periods, a drastic loss of the
existing Tahr habitats was observed for all the future time periods. The
extreme climate change scenario RCP 8.5 for 2030, 2050 and 2080
predicted the maximum range loss as expected (61.2%, 61.4 and 63% of
current habitats respectively; Fig. 5 and Supplementary file Table 2). In
all the future scenarios, remaining suitable habitats were restricted
to < 8500 km? in the Western Ghats (Table 2). As per our model pre-
dictions, the relatively optimistic climate change scenario (RCP4.5)
predicted a gain of more novel habitats compared to the extreme cli-
mate change scenario (See Table 2, Supplementary file Fig. S6). Inter-
estingly, the extreme climate change scenario during 2030 predicted
more suitable habitats compared to all other scenarios. By 2080, we
notice that under the extreme climate change scenario, our models
predicted that only an area of 31,297 km? will be suitable through time
(Supplementary file Table 2). Even though our model predicts a drastic
loss in suitable habitats during 2030s we also notice that the areas with
stable climatic conditions are relatively high compared to other sce-
narios during this time period.

The multivariate environmental similarity (MESS) analysis pre-
dicted few areas with novel climate across the range in the future
predictions. The most dissimilar variable (MOD) map shows that the
novel climate conditions found were due to the influence of slope
variable and Biol8 (Precipitation of the warmest quarter). However,
these areas were found outside the training range of our model
(Supplementary file Figs. S5-510).

3.3. Habitat stability and loss in protected areas

The protected area network within the Western Ghats was found to
have climatically suitable conditions for Thar in the current scenario.
However, most of the existing protected areas (PAs) will become un-
suitable under future climate scenarios (Supplementary file Table 3).
Our models suggest that > 60% of the current suitable habitats in the
southern Western Ghats will be lost as a result of the climate warming.
To be specific, Kalakkad Mundanthurai Tiger reserve, Peppara WLS,
Neyyar WLS, Schenduruny WLS and Srivilliputhur WLS shows a com-
plete absence of suitable climatic conditions for Tahr in the future
scenario. In addition, other PAs in this region such as Peechi-Vazhani
Wildlife Sanctuary (WLS), Parambikulam Tiger Reserve (TR), Chinnar
WLS, Silent Valley National Park (NP), and Srivilliputhur WLS are also
vulnerable to extreme climate changes scenarios. The abiotically stable
areas under both the climate change scenarios were located in Periyar
TR, Eravikulam, Mukurthy NP, Kalakkad Mundanthurai TR, Indira
Gandhi NP, and Anamalai WLS (Supplementary file Table 3). Even
though there are stable habitats predicted by the model, these PA’s are
expected to experience a drastic habitat loss as a result of the future
climate change.

4. Discussion

The results of our study suggest a drastic loss of Tahr’s current
suitable habitat even under moderate future climate change scenarios.
The extreme climate scenario for the time period 2030s and 2050s was
subjected to more habitat loss as compared to the moderate climate
change scenario except for 2050. As per the current model outputs the
current habitats may face the most severe risk from climate change in
the near future. We recommend immediate conservation attention for
vulnerable habitats.

Apart from threats posed by climate change, the species is also
known to face serious threats due to hunting and other human-induced
disturbances. Vegetation change in the native habitat of Tahr due to the
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Fig. 4. Response curves showing relationships between the important environmental variables and probability of presence of Nilgiri Tahr. The values shown are an

average of 10 replicates of cross-validated Maxent models.

replacement of short grasses by tall grass cover as a result of the on-
going protection against forest fire is also shown be detrimental to the
survival of Tahr (Hopeland et al., 2016). Recent studies have shown
that out of the overall 10-25 populations which sums to a total of 3122
individuals of the species in the Western Ghats, eight are very small
populations (Predit et al., 2015; Hopeland et al., 2016). All these factors
can further aggravate the chances of local extinctions in addition to
climate change.

The present study shows even though PAs such as Chinnar WLS,
Eravikulam NP (which holds comparatively larger populations of the
species in the Western Ghats), and Parambikulam TR will have some
stable areas under different climate change scenarios, while the other
areas are predicted to experience severe habitat loss in the future. This
ultimately might lead to the chances of large-scale local extinction of
the species in those locations.

Globally, several studies suggest that rapid climate change will lead
to severe range contraction, range shifts and local extinctions of species
(Parmesan 2006; Bellard et al., 2012). Species unable to disperse or
adapt to this change will be extinct. A recent study revealed the first
Mammal species- Bramble Cay melomys (Melomys rubicola), a marsu-
pial found in Australia- became extinct due to climate change (Watson,
2016). Even though the habitat requirements of the species were well
understood, along with its vulnerability to sea level rise, Watson (2016)
concluded that the species went extinct due to the lack of ‘proactive
conservation planning.! Knowledge of the threats experienced by a
species and its habitats, coupled with timely management decision
making, is thus critical to the conservation of endangered species
(Martin et al., 2012). A global analysis by Warren et al. (2013) showed
that without proper mitigation strategies the median global annual
mean temperature might rise to 4°C above pre-industrial levels by
2100. Warren et al. (2013) also predicted 34 = 7% of the animals and
57 + 6% of the plants may lose 50% or more of their geographic range
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by the 2080s. According to the 5th Assessment Report of the Inter-
governmental Panel on Climate Change (IPCC, 2014), the global surface
temperature is projected to exceed 1.5 °C for the scenario RCP4.5 and
will exceed 2 °C under RCP8.5. In this context, the current conservation
management process may not be sufficient to mitigate these conditions
due to simultaneous alteration in the existing habitats (Hoegh-Guldberg
et al., 2008). All these lead to the contemporary necessity of evaluating
the climate vulnerability of every species, especially those with limited
geographic distributions.

The climate vulnerability of current Tahr habitats and other threats
to the species and its habitats call for an immediate conservation at-
tention and planning. Several habitat dynamics studies in high altitude
grasslands including the Tahr’s substantiate the modeling results and
need for conservation planning. For example, the conversion of grass-
lands in high rainfall areas into woody vegetation (Bond and Parr,
2010; Sukumar et al., 1995; Vergis et al., 2011) can also result in ha-
bitat loss of the species. The absence of fire as a result of better sur-
veillance and forest management practices occurring in the region can
intensify the ecological succession of woody vegetation in existing
grasslands which reduce foraging opportunities for Tahr and make
them more susceptible to predators (Hopeland et al., 2016). In sum-
mary, the modeling results, as well as the ecological study results from
the Tahr habitats together, demand an immediate, proactive con-
servation and management strategy with a strong focus on the protec-
tion of both existing Tahr habitats and areas that may be suitable for
Tahr in the future.

4.1. Management implications and caveats

Here, using ecological niche models, we provide an opportunity to
evaluate the future needs for conserving Tahr habitat by considering
the ongoing global climate change. Our study shows drastic loss of Tahr
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Fig. 5. Change maps representing the predicted future (stable/no change, contraction/loss, expansion/gained) climatic habitats for Nilgiri Tahr. for the years 2030s,

2050s and 2080s under RCP4.5 and RCP8.5 climate change scenarios.

Table 2
Area (km?) which were found suitable/stable, lost and gained for Nilgiri Tahr
with in the Western Ghats hotspot compared to the current scenario.

Future scenario Stable Gain Lost

2030 RCP4.5 1242 4482 15,666
2030 RCP8.5 1254 2148 15,324
2050 RCP4.5 1087 5540 15,557
2050 RCP8.5 1118 2422 15,917
2080 RCP4.5 897 3954 16,188
2080 RCP8.5 2062 3197 16,019

habitats compared to the present and is the first of its kind which uses
ecological niche models to predict the suitable habitats for Tahr in the
Western Ghats. Niche models are perceived as a best-suited method
while dealing with uncertainties such as future climate change for
conservation prioritization and reserve selection process (Tulloch et al.,
2016). For example Ecological niche models were successfully em-
ployed in identifying critical habitats and understand the effect of cli-
mate change in the distribution of the endangered ungulate Prze-
walski’s gazelle (Procapra przewalskii) in China (Hu and Jiang, 2011).
Niche models were also used to understand suitable habitats of the
Hoplocephalus bungaroides, the most endangered snake of Australia in
the future climate warming scenarios (Penman et al., 2010). These
studies shed light to the need to conservation of areas which are more
suitable for its persistence in the future scenarios. Creation of additional
protected areas in suitable habitats outside the existing PA network
within in the range will be helpful to curb the effect of climate change
on Tahr as well as its associated species. Several small populations of
Tahr are subjected to illegal hunting. Rai and Johnsingh, (1992)

reported the incidence of hunting and population decline from Ka-
lakkad-Mundanthurai Tiger reserve, Interestingly, our models predict a
major loss of suitable habitats of tahr in this region, in such situations
we recommend suitable steps to control hunting and preserve its ex-
isting habitats along with increased awareness of species conservation
under climate change. Monitoring small populations in areas were ha-
bitat loss are shown to be prominent must be carried out immediately
since local catastrophic events such as human mediated land transfor-
mation, diseases outbreaks and poaching in conjunction with climate
change could easily cause extinction of Tahr in these habitats. Similarly,
site-specific management programs, informed by ENMs, can be crucial
in conservation planning of the Tahr. Based on our results we re-
commend site specific conservation measures to those locations where
the existing habitats are predicted to be lost under climate change.
These locations can be potentially vulnerable and it is advisable to
protect and improve the existing conditions of these habitats. We also
recommend to avoid any man made alterations in areas which are
predicted to have stable habitat conditions for future.

While considering the results of the study we also acknowledge
several caveats. For example, the WorldClim data used for the niche
modeling can be less accurate in regions like Western Ghats with few
weather stations. Hence, we see the possibility that the models pre-
sented here are subject to change with the availability of better climatic
forecast. The accuracy of future models is also questionable in precisely
forecasting future changes in local climate. Our models predicted novel
habitats in human-dominated lowlands outside the Western Ghats.

Nevertheless, it in noteworthy to mention that these habitats will be
of no use with regard to the in-situ conservation of the species. This
prediction might have occurred due to the choice of rainfall variables in
our model building, and it’s also noteworthy to mention that the
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locations outside the Ghats, in general, receive high rainfall: Our choice
of minimum training presence threshold in determining habitat suit-
ability can be very subjective, especially without reliable absence data,
and can change the areas predicted to be suitable. Even though several
caveats exist, niche models are recommended to incorporate for
prioritization studies (Tulloch et al., 2016), which will ensure that va-
luable conservation opportunities will not be missed in the wake of
global climate change.

5. Conclusions

The present study demonstrates that the existing Nilgiri Tahr ha-
bitats are vulnerable to future climate change. Under rapid climate
change most of its current habitats will not provide suitable climatic
conditions for this species to persist in the wild conditions. The current
protected area networks in the Western Ghats are predicted to lose most
of their suitable habitats for Tahr as a result of future climate change.
Our model results suggest that the existing protected area networks
may not be effective in conserving the current Tahr population in the
Western Ghats, unless mitigation measures are incorporated in the
management plans considering the climate vulnerability of the species.
We recommend immediate surveys for improving connectivity and
habitat quality of those locations which are predicted to lose its climatic
conditions in the future.
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