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Abstract While high resolution satellite remote sensing has been hailed as a very useful
source of data for biodiversity assessment and monitoring, applications have been more
developed in temperate areas. The biodiverse tropics offer a challenge of an altogether
different magnitude for hyperspatial and hyperspectral remote sensing. This paper exam-
ines issues related to hyperspatial and hyperspectral remotely sensed imagery, which con-
stitutes one of the most potentially powerful yet underutilized sources of for tropical
research on biodiversity. Hyperspatial data with their increased pixel resolution are possi-
bly best suited at facilitating the accurate location of features such as tree canopies, but less
suited to the identification of aspects such as species identity, particularly when spatial
resolution becomes too fine and pixels are smaller than the size of the object (e.g., tree
canopy) being identified. Hyperspectral data on the other hand, with their high spectral
resolution, can be used to record information pertaining to a range of critical plant proper-
ties related to species identity, and can be very effective used for discriminating tree species
in tropical forests, despite the greater complexity of such environments. There remains a
glaring gap in the easy availability of hyperspectral and hyperspatial satellite data in the tro-
pics due to reasons of cost, data coverage, and security restrictions. Stimulating discussion
on the applications of this powerful, but underutilized tool by ecologists, is the first step in
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promoting a more extensive use of such data for ecological studies in tropical biodiversity
rich areas.

Keywords Biodiversity - Hyperspatial data - Hyperspectral data - Monitoring - Remote
sensing - Satellite imagery - Tropics

Rapid developments in satellite remote sensing have generated much enthusiasm about its
potential as a powerful tool for ecological research. Yet, the results achieved have largely
belied expectations (Innes and Koch 1998). While efforts have been made to utilize moder-
ate spatial resolution satellites such as Landsat ETM+ and SPOT for ecological studies
such as biodiversity estimation, these have achieved only moderate success, and provided
conflicting outcomes (e.g., Jakubauskas and Price 1997; Verlinden and Masogo 1997; as
also reviewed in Nagendra 2001). While such data are very valuable for the studies of
human drivers of land cover change, being at an appropriate scale for such uses (Ostrom
and Nagendra 2006), they are less useful for studies of biodiversity distribution. Increas-
ingly, thus, the use of remote sensing became limited to purposes of habitat mapping and
analyses of land cover change.

One of the major perceived limitations of satellite remote sensing platforms such as
Landsat has been that of insufficient spatial and spectral resolution. However, as stated by
Kerr and Ostrovsky (2003): ‘[the] perceived ‘scale gap’ is narrowing [...] with the increas-
ing availability of very high-resolution data that can be linked directly to traditional field
ecological measurements’. Thus, in recent years, a rapid improvement in spectral and spatial
resolution has ostensibly provided researchers with better means to link data from the sky
with data from the field (Kerr and Ostrovsky 2003). The launch of very high spatial resolu-
tion satellite sensors like IKONOS (spatial resolution in the MS: 4 m), Quickbird (spatial
resolution in the MS: 2.88 m), and OrbView-3 (spatial resolution in the MS: 4 m) as well as
very high spectral resolution sensors such as Hyperion (196 bands) have therefore provided
researchers with the opportunity to study ecological systems at far greater detail than previ-
ously possible (e.g., Levin et al. 2007; Rocchini 2007). These data have been used for a
range of ecological applications including studies of logging impact assessment (Read et al.
2003), upland vegetation monitoring (Mehner et al. 2004), biomass modeling (Thenkabail
etal. 2004), species richness estimations (Levin et al. 2007; Rocchini 2007), landscape
multi-temporal analysis (Im et al. 2007), forest and wetland classification (Kayitakire et al.
2006; Johansen et al. 2007; Laba et al. 2008), urban vegetation life form estimation (Nichol
and Wong 2007), and land cover fractional mapping (Olthof and Fraser 2007).

Yet, despite the rapid improvements in remote sensing technologies, an old problem
continues to persist. Temperate areas have seen much greater development and application
of these new technologies for ecological research, while applications in the tropics continue
to lag behind (Nagendra 2001; Sanchez-Azofeifa et al. 2003; Townsend et al. 2008). Tem-
perate landscapes offer a more manageable location for such studies, with a relatively small
number of habitat types, and within each type, a greater predominance of a few, dominant
species. The tropics on the other hand offer a challenge of an altogether greater magnitude,
with far greater numbers of landscapes, habitats, and species, distributed across a variety of
stages of growth and succession, and with far more complex canopy structures (Nagendra
2001). Due in part to this challenging complexity, the use of remote sensing in the tropics
has largely been limited to studies of deforestation (e.g., Geist and Lambin 2002), while
hyperspectral and hyperspatial satellites have been insufficiently explored for ecological
research in these areas (Sanchez-Azofeifa et al. 2003; Townsend et al. 2008).
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A priority area of research for ecologists is the assessment and monitoring of biodiversity.
This is especially essential in tropical habitats where much of the world’s species diversity is
concentrated (Nagendra and Gadgil 1999; Sanchez-Azofeifa et al. 2003; Loarie et al. 2007).
With accelerated declines in tropical forest clearing and biodiversity across the world, there
is an urgent need to identify the locations of biodiversity hotspots, map the distribution of
biodiversity across different habitats and landscapes, and monitor rates of change over time.
What is the potential of hyperspatial and hyperspectral data for this purpose?

Remote sensing has long been used to predict species rich sites based on both environ-
mental heterogeneity as derived by spectral heterogeneity (Palmer et al. 2002; Foody and
Cutler 2003; Rocchini et al. 2004; Hernandez-Stefanoni and Dupny 2007) and Net
Primary Productivity (NPP) as derived from vegetation indices such as NDVI (Fairbanks
and McGwire 2004; Gillespie 2006). While some success has been achieved, obviously, no
single factor such as landscape heterogeneity, or primary productivity, drives biodiversity
patterns (Turner et al. 2003). Instead, species are clustered based on some exogenous
factors, such as climate and soil type. Such clustering or autocorrelation of species distri-
butions is often at broad scales, facilitating the use of medium-coarse resolution imagery
for species diversity estimations (Dormann 2007). Other biotic and abiotic processes
may however cause further structuring within smaller areas of relative environmental
homogeneity, giving rise to small scale niche patterning, and fine scale variations in
biodiversity (Legendre 1993; Wagner 2003).

In such cases, there is an apparent need for hyperspatial data. When medium pixel
resolutions, a few tens of meters in size, are used for ecological studies, then a single pixel
often encompasses a number of individual trees or plants, sometimes even crossing habitat
boundaries (Small 2004). Thus each pixel corresponds to a mixed field signature averaged
across multiple objects, leading to difficulties in identification of species identity, or the
mapping of fine scale variations in biodiversity. Hyperspatial satellite imagery is potentially
much better suited for biodiversity mapping with pixel sizes of the size of 5 m or less corre-
sponding well to the size of individual tree crowns (Read et al. 2003; Wulder et al. 2004).

Figure 1 illustrates the potential of hyperspatial data for biodiversity studies. In this sub-
tropical landscape in the Nepal Terai plains, the Rapti River separates the Chitwan National
Park in the south from a mix of agricultural landscapes and human impacted forests to the
north (Nagendra et al. 2008). Even a visual comparison of a Landsat ETM+ image of this
landscape (Fig. 1a) with an IKONOS image of a nearby date (Fig. 1b) indicates that the
IKONOS image is capable of detecting heterogeneity at a much finer scale that can be
observed by the ETM+ image. The ecological impact of small streams and rivulets on bio-
diversity, and the human impact through roads, mud tracks and the nearby agricultural
fields, which can be seen to an extent in the medium resolution Landsat image, is far more
clearly discernible from the hyperspatial IKONOS image. A quantitative analysis of the
data supports this (Nagendra, unpublished results).

For instance, studies in Australian woodlands (see e.g., Lassau et al. 2005) also indicate
that hyperspatial multispectral imagery from a Compact Airborne Spectrographic Imager
(CASI-2) enables the fine scale evaluation of habitat heterogeneity, and facilitates predic-
tions of ant biodiversity. These investigators conclude that analysis at this level of detail
would not have been possible using medium resolution imagery such as Landsat. Further,
hyperspatial data may also prove useful in detecting species variability patterns at a local
scale by further driving field sampling (Rocchini et al. 2005). Thus, while such data may
not result in field surveys becoming obsolete, they can be very effectively used to develop
more efficient, stratified field sampling design strategies.
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Fig. 1 A landscape in the Chitwan district, Nepal covered by (a) a Landsat ETM+ image of March 2000 and
(b) an IKONOS image of October 2001

Yet, it is not always true that smaller pixel dimensions increase the accuracy of biodiver-
sity assessment, particularly when the distribution of individual plants or trees constitute a
mixture of spatial objects overlapping at multiple spatial scales (Nagendra 2001).When
pixel dimensions shrink below the size of the object studied, to a point where individual
pixels are smaller than the size of individual tree crowns, for instance, then there is a
sudden increase in the variability of signatures of pixels that cover the same individual tree
(Ricotta et al. 1999; Song and Woodcock 2002; Rocchini and Vannini 2008). This can
happen, for instance, when some pixels cover a leaf in sunshine and others are located over
dark gaps between leaves, or on the tree bark. In such situations, the high spatial resolution
actually confounds the issue, and makes it harder to handle relatively simple tasks like
delineating tree canopies, let alone assigning signatures to different species (Nagendra
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2001; Wulder et al. 2004). This is corroborated by field experience. In an attempt to map
the distribution of invasive trees in southern Florida, Fuller (2005) conclude that IKONOS
imagery is not very useful for this task, due to the high levels of internal variability within
tree canopies detected by this imagery, which make it difficult to delineate and classify
individual tree crowns.

Hyperspectral data on the other hand, with their ability to collect information at a high
spectral resolution using a series of contiguous spectral bands, each with a narrow spectral
range, can be used to record information pertaining to a range of critical plant properties
including leaf pigment, water content, and chemical composition (Curran 1989; Martin and
Aber 1997; Townsend et al. 2008). Variability in hyperspectral information can be used to
great effect for discriminating tree species in landscapes including tropical forests, despite
the greater complexity of such environments (Cochrane 2000; Clark et al. 2005).

Hyperspectral data are capable of fairly accurate identification of different species
(Nagendra 2001; Carlson et al. 2007). For instance, Thenkabail et al. (2004) demonstrated
that Hyperion narrowband data led to land use classifications with an overall accuracy (up
to 52%) higher compared with broadband sensors like IKONOS or Landsat ETM+ despite
the lower spatial resolution being considered. In a study of lowland forests in Hawaii,
Carlson et al. (2007) successfully used airborne hyperspectral imagery (AVIRIS) to predict
species richness at a fairly fine scale of 0.1 ha. In the moist tropical forests of Costa Rica,
Clark et al. (2005) found that at a fixed spatial scale, hyperspectral imagery like HYDICE
performed significantly better than multispectral data like IKONOS, Landsat, and ASTER
in discriminating tree species. In another study in Costa Rica, Kalacksa et al. (2007) found
that the increased spectral resolution provided by Hyperion hyperspectral imagery is
advantageous to the detection of forest biodiversity in a tropical dry forest landscape. Thus,
in contrast to hyperspatial data which seem best suited to the accurate location of features
such as tree canopies, hyperspectral data appear capable of significantly increasing the
accuracy of identification of features such as species identity (Thenkabail et al. 2004).

There can be no doubt of the visual appeal of high resolution satellite images, which,
through outlets such as Google Earth, have enabled in making detailed, fine scale colored
images of large parts of the Earth easily available to the larger public. Yet, the scientific
applicability of these images, particularly for ecological studies in the tropics, needs to be
further investigated (Townsend et al. 2008). Many problems still persist. As stressed by
Turner etal. (2003): ‘Remote sensing products should not be taken at face value.
Atmospheric phenomena, mechanical problems with the sensor and numerous other effects
might be distorting one’s view.’

However, efforts are being made to tackle technical issues related to calibration and
geometric correction (Fraser et al. 2006), atmospheric correction (Wu et al. 2005), spectral
enhancement (Ling et al. 2007) and spatial enhancement (Sohn and Dowman 2007) of high
resolution satellite image data.

Despite the attractive possibilities that hyperspectral and hyperspatial imagery offer for
biodiversity assessment, there have been few examinations of these data in the species rich
tropics, compared to temperate areas (Townsend et al. 2008). There remains a glaring gap
in the easy availability of such data across the world (Goetz 2007; Gillespie et al. 2008).
This gap is especially prominent in tropical biodiversity hotspots, where the need for
biodiversity assessment and monitoring is perhaps most critical (Kark et al. 2008). There
are huge costs associated with developing and fabricating high spatial and spectral resolution
sensors, and inevitable tradeoffs emerge between spectral and spatial resolution and tempo-
ral coverage, when one takes into account the immense sizes of the datasets involved, the
time taken to download them, and the difficulties involved with data storage. Therefore, an
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increase in the resolution of one attribute, such as increasing spectral resolution, often leads
to a sacrifice of other attributes, such as temporal resolution or spatial coverage. The
increased pricing of such imagery also puts it out of the reach of many ecologists (Gillespie
et al. 2008)—especially those located in developing countries where the need is perhaps
greatest.

Table 1 describes the spatial and spectral resolution, the geographic coverage, temporal
frequency and cost of the satellite sensors and platforms routinely used for biodiversity
studies and vegetation mapping today. While hyperspectral data are generated at medium
spatial resolutions of 20-30 m at best, hyperspatial data are usually multispectral, spanning
4-5 bands. The increased cost of these data limits their use in scientific studies (Gillespie
etal. 2008). Further, unlike older satellite programs such as Landsat, hyperspectral and
hyperspatial sensors, whether airborne or satellite borne, do not routinely cover all areas of
the globe at repeated intervals of time (Loarie et al. 2007). Instead, they collect images
when commissioned. Thus, obtaining archival data for a specific area and time period is a
matter of chance, even if one has the money available for such research. Given the relatively
recent arrival of these instruments, and their limited geographic spread, their utility will
only be realized to the full when they will be coupled with existing large scale monitoring
systems that currently utilize moderate resolution multispectral data like SPOT, ASTER,
and Landsat TM/ETM+ to great effect (Duro et al. 2007).

Finally, some countries also impose restrictions on the availability of hyperspatial data,
due to concerns about security. Thus, while there is a real need for more studies that utilize
high resolution satellite imagery for biodiversity assessment in the tropics, such research
will only receive its final impetus when these data will be available across all parts of the
world with the same temporal frequency, at reasonable prices, and without imposing
restrictions on their availability for research.
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